雲マイクロ物理解明のための大規模数値計算手法の基盤技術開発

名古屋大学HPC 計算科学連携研究プロジェクト成果報告シンポジウム

2012年 5月9日 名古屋大学 IB電子情報館

後藤俊幸、鈴木祐有紀、小崎友裕、 渡邊威、 尾形修司、小林亮 (名古屋工業大学大学院 創成シミュレーション工学専攻)

- 石井克哉 (名古屋大学 情報基盤センター)
- 草野完也(名古屋大学 太陽地球環境研究所)
- 坪木和久 (名古屋大学 地球水循環研究センター)

Nagoya Institute of Technology

Motivation 1

Turbulence Cloud interaction

Turbulence: transport and mixing of momentum, heat and mass many scales of motion Eulerian representation

Interaction buoyancy (heat, water vapor), momentum

small scales or all scales, time scale

Cloud: water droplets, radius, mass, heat particle interaction (collision) Lagrangian representation

Motivation 2

Development of high performance code of turbulence + particles

Many nodes + Many cores

Eulerian code for continuum

Incompressible fluid Poisson equation : non-local in space $N^3 \log_2 N$ Scalar equation : local in space

Needs for Accuracy and Less communication

Hybrid scheme spectral + combined compact difference) for scalar solver acceleration 30%(Sc=1), 400% (Sc>50)

Lagrangian code for particle

Particle tracking random access to the memory Relabeling interpolation

Direct Numerical Simulation of Turbulence and Cloud Droplets

Andfrejczuk et al JAP. 2004 Kumar, Schumacher, Shaw, TCFD 2012

Included

- stratocumulus cloud at about 1500m
- turbulence + buoyancy
- temperature
- water vapor mixing ratio
- water droplets of radius 10μm
- condensation, evaporation,
- Stokes drag + radius dependent relaxation time + gravity

Not included

- Collision of droplets, coagulation
- Nucleation of water droplets
- Rain, ice

Basic Equations

Turbulence (Eulerian) Boussinesq approximation

$$\begin{split} \frac{\partial u}{\partial t} + u \cdot \nabla u &= -\nabla p + \nu \nabla^2 u + e_z B + f, \qquad \nabla \cdot u = 0 \\ \text{buoyancy external force} \end{split}$$

$$\begin{aligned} \frac{\partial T}{\partial t} + u \cdot \nabla T &= \kappa \nabla^2 T + \frac{L}{c_p} C_d \\ \frac{\partial q_v}{\partial t} + u \cdot \nabla q_v &= \kappa \nabla^2 q_v - C_d \\ B &= g \left(\frac{T - T_0}{T_0} + \epsilon (q_v - q_{v0}) - q_l \right) \end{split}$$

High Reynolds number turbulence : Spectral methodScalar transport: Spectral (or hybrid method)

Andfrejczuk et al JAP. 2004 Kumar, Schumacher, Shaw, TCFD 2012

Cloud droplets (Lagrangian)

$$\begin{split} \frac{dX_j}{dt} &= V_j(t) \\ \frac{dV_j}{dt} &= \frac{1}{\tau_j(t)} \left(u(X_j(t), t) - V_j(t) \right) + ge_3 & \text{Stokes approximation} \\ R_j(t) \frac{dR_j(t)}{dt} &= KS(X_j(t), t) \right), \qquad R_j = \text{droplet radius} \\ C_d(x, t) &\equiv \frac{1}{m_{air}} \frac{dm_l(x, t)}{dt} = \frac{4\pi r_l K}{\rho_0 (\Delta x)^3} \sum_{k=1}^{N_\Delta} R_j(t) S(X_j(t), t) \\ C_{\text{ondensation rate}} \\ S &= \frac{q_v}{q_{vs}(T)} - 1, \qquad \text{supersaturation rate} \\ K^{-1} &= \frac{\rho_l R_v T}{D_v e_{sat}(T)} + \frac{\rho_l L}{\kappa_a T} \left(\frac{L}{R_v T} - 1\right) \end{split}$$

PIC

Interpolation of velocity and scalar fields at particle position Redistribution of cloud properties onto grid points Simulations of Steady, Decay wet, Decay dry

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\frac{1}{\rho_{a}}\nabla p + v_{a}\nabla^{2}\boldsymbol{u} + \boldsymbol{B}\boldsymbol{e}_{3} + \boldsymbol{f}$$

	RUN A Steady	RUN B Decay wet	RUN C Decay dry
External force F	ON	OFF	OFF
Buoyancy B	ON	ON	OFF

Run A Steady

Temperature fluctuation

: Gaussian, random with zero mean and the spectrum

Droplets

 θ

Water vapor mixing ratio $q_{\rm v}$

$$q_v(x, t = 0) = (q_v^{\max} - q_{v0}) \exp(-Az^6) + q_{v0}$$

$$q_{v}^{\text{max}} = 1.02 q_{vs}$$
 $q_{v0} = 0.90 q_{vs}$
 $q_{v} = q_{vs}$ at $z = \pm L_{\text{B}} / 6$

$$E_{\theta}(k) = \frac{16}{3} \sqrt{\frac{2}{\pi}} k_0^{-5} k^4 \exp\left(-2(k/k_0)^2\right)$$

$$k_0 = 6$$

- Random in space in the range $-L_{\rm B}/6 \leq z \leq L_{\rm B}/6$
- No. of droplets : $128^3 \Rightarrow 2 \times 10^{6}$
- Initial radius : 10 µm

Parameters

格子点数:	<i>N</i> ³	256 ³	雲粒子数:	$N_{\rm p}^{3}$	128 ³
時間刻み幅:	Δt	5.0×10^{-4} s	初期粒子半径:	<i>r</i> (0)	10 µm
乱流Reynolds数:	Re _t	268	初期緩和時間:	$\tau_{\rm p}(0)$	1.40×10^{-3} s
Kolmogorov時間:	$ au_{ m K}$	4.11 × 10 ⁻² s	初期Stokes数: $St \coloneqq \tau_{p}$	$\tau_{\rm K} St(0)$	3.40×10^{-2}
カを入れる波数領域		$1 \leq \mathbf{k} \leq 2$			

Turbulence

Taylor micro scale Re 数: Re	λ 98	Taylor micro scale : λ	1.53 cm
解像度条件: k _{max}	2.28	積分長: L	5.06 cm
運動エネルギー:	$E = 139 \text{ cm}^2/\text{s}^2$	² Kolmogorov 長: η	7.85×10^{-2} cm
エネルギー散逸率:	\approx 89.4 cm ² /s ²	Root mean squared velocity: $u_{\rm rms}$	9.60 cm/s
縦速度微分のひずみ度: 5	-0.525	渦回転時間: T _{eddy}	0.527 s

Computer

64 nodes, 256 proc. Flat MPI on Fujitsu FX1 at Nagoya Univ.

T: 0-15s No. of visualized droplets : 10^{5} r(t=0) = $10 \mu m$

Interface at super saturation

t=0 s

t=0.2 s

t=1.0 s

t=0.5 s

$$\begin{aligned} \frac{dE}{dt} &= -\mathcal{E} + P_{\rm B} = -\mathcal{E}_{\rm total}, \quad P_{\rm B} = \langle Bu_3 \rangle > \mathbf{0} \\ R_j(t) \frac{dR_j(t)}{dt} &= KS(X_j(t), t)), \qquad R_j = \text{droplet radius} \\ C_d(x, t) &\equiv \frac{1}{m_{air}} \frac{dm_l(x, t)}{dt} = \frac{4\pi r_l K}{\rho_0(\Delta x)^3} \sum_{k=1}^{N_\Delta(x, t)} R_j(t)S(X_j(t), t) \\ \hline R_0 & R_1 & R_1 & R_2 \\ T_0 < T_1 & R_1 & T_1 < R_2 \\ T_0 < T_1 & T_1 & q_1 & T_1 < R_2 \\ T_1 < T_2 & q_1 > q_2 & T_1 < Q_2 \\ T < 0, \quad C_d < 0 & T C_d > 0 & T C_d > 0 \\ q_v > 0, \quad C_d < 0 & q_v < 0, \quad C_d > 0 & q_v C_d < 0 \end{aligned}$$

$$\begin{split} \frac{\partial \langle T^2 \rangle}{\partial t} &= -\kappa \Big\langle (\nabla T)^2 \Big\rangle + \frac{L}{c_p} \langle TC_d \rangle = -\bar{\chi} + P_T \\ & \text{Dissipation Production} > 0 \\ \frac{\partial \langle q_v^2 \rangle}{\partial t} &= -\kappa \Big\langle (\nabla q_v)^2 \Big\rangle - \langle q_v C_d \rangle = -\bar{\chi}_v + P_v \end{split}$$

Run B and Run C Decay wet and Decay dry

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\frac{1}{\rho_{a}}\nabla p + v_{a}\nabla^{2}\boldsymbol{u} + B\boldsymbol{e}_{3} + \boldsymbol{f}$$

Temperature fluctuation

Water vapor mixing ratio $q_{
m v}$

 $\theta = 0$

- Random in space in the range - $L_{\rm B}/16 \le z \le L_{\rm B}/16$ $q_{\rm v} \ge q_{\rm vs}$
- No. of droplets : $128^3 \doteqdot 2 \times 10^6$
- Initial radius : $20 \ \mu m$

Turbulence energy budget

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -\varepsilon + P_{\mathrm{B}} = -\varepsilon_{\mathrm{total}}, \quad P_{\mathrm{B}} = \langle Bu_{3} \rangle$$

Run B f = 0**Run C** f = 0 and B = 0

Dissipation rate of kinetic energy

Buoyancy force due to cloud droplets at small scales

Large scale flow is generated

Energy production by buoyancy force

$$\frac{\mathrm{d}E}{\mathrm{d}t} = -\varepsilon + P_{\mathrm{B}} = -\varepsilon_{\mathrm{total}}, \quad P_{\mathrm{B}} = \langle Bu_{3} \rangle = \int T_{\mathrm{B}}(k) \,\mathrm{d}k, \quad T_{\mathrm{B}}(k) = \sum_{\mathrm{shell}} \mathrm{Real} \langle B(k)u_{3}(-k) \rangle$$

Initially : Energy transferred to high k Later : energy transferred to low k generation of large scale flow from small scale forcing (seed) due to the cloud droplets

Field structure and particles **Run B**

 $q_{\rm v} \ge q_{\rm vs}$ super saturation

t=0.2 s

r(t) grows in supersaturation area

heat release

 $\theta > 0$

Nagoya Institute of Technology

Field structure and particles Run B

n B

t=0.6 s

• Sedimentation of particles

droplets

Nagoya Institute of Technology

Field structure and particles Run B t=1.0 s

$$q_{\rm v} \ge q_{\rm vs}$$

super
saturation

 $\theta > 0$

Summary

- Fundamental code of turbulence and cloud droplets is almost ready
- Buoyancy is an important source of turbulence kinetic energy
- Heat exchange occurs at small scales and is transferred to large scales
- New idea is presented that the forcing at small scales exists and the excitation is inversely transferred to large scales
- Scalar solver is accelerated (FFT+CCD)

Future

To improve the computational efficiency To include further effects such as particle collision To increase the system size To make a code of droplet nucleation To project fine information on macro scale variable (coarse grained description)

Scalability

For the future

.

What are most important in cloud physics ?

What aspects of cloud physics should be explored ?

Acknowledgements

HPC, CC at Nagoya Univ., JHPCN Grant-in-Aid for Scientific Research No.21360082