「名古屋大学HPC計算科学連携研究プロジェクト」 成果報告シンポジウム 5/9/2012

地球流体乱流の数値解析

木村 芳文(研究代表者) 名古屋大学多元数理科学研究科

collaboration:

Jackson R. Herring National Center for Atmospheric Research

Transition in Energy Spectrum for Rotating and Stratified turbulence

- -3 : enstrophy cascade for Quasi-Geostrophic turbulence (~2D)
- -5/3 : Kolmogorov turbulence (3D)

Transition in Energy Spectrum for Stratified turbulence

 $k_{7}^{-2} \sim -3 \longrightarrow$ $k^{-5/3}$ Observations: (in the ocean) Garret-Munk spectrum Kolmogorov spectrum Munk (1981), Garrett *et.al* (1981) transition wavenumbe: $k_c \sim \sqrt{N^3/\varepsilon}$ (Ozmidov scale) Theory: Munk (1981), Garrett *et.al* (1981), Lumley (1964), Holloway (1983) All support the Ozmidov scale for transition Simulation: LES at 128³ Carnevale, Briscoline & Orlandi (2001) LES up to 512^3 Yoshida, Ishihara & Kaneda (2002) ~ Ozmidov for transition Waite & Bartello (2004) DNS + hyperviscosity (Waite & Bartello (2004) for the review)

Navier-Stokes equation with the Boussinesq approximation

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + v\nabla^2 \mathbf{u} + \theta \mathbf{\hat{z}} + \mathbf{F}$$
$$\frac{\partial \theta}{\partial t} + (\mathbf{u} \cdot \nabla)\theta = \kappa \nabla^2 \theta - N^2 w$$
$$\nabla \cdot \mathbf{u} = 0$$

where

- $\mathbf{u} = (u, v, w)$: velocity
 - : temperature fluctuations

$$N^2 = \frac{g\alpha}{T_0} \frac{\partial \overline{T}}{\partial z}$$

F

 θ

- : Brunt Vasa afrequency
- : Forcing (horizontal)

Numerical Methods

- forced simulations
- 2π -periodic box with 1024³ grid points ($R_{\lambda} \sim 300$)
- ◆ 3rd order time-marching scheme
- Initial energy spectrum : E(k) = 0
- Force horizontal velocity components
- Add red noise to modes within a wave number band $(k_f \sim 5)$

Solving Ornstein-Uhlenbeck process (2nd order stochastic ODEs)

Enstrophy contours (blow-up)

- Kelvin-Helmholz billows are observed in the vertical.
- The billows are not single rollers and chopped in the horizontal.

Characteristics of stratified turbulence

• Composite of "waves" and "turbulence"

"Craya-Herring decomposition" to separate waves and turbulence

• Highly anisotropic

orthnormal coordinates

History of Φ_1 energy spectra (N²=100)

First, steep spectrum ($\sim k^{-3}$) develops then small scales rise.

History of buoyancy Reynolds number

 L_0 : Ozmidov scale L_K : Kolmogorov scale

History of buoyancy Reynolds number

12/22

How to understand these observations?

More than one inertial ranges?
How to deal with anisotropy?

 ✓ review : Kolmogorov (homogeneous isotropic) turbulence >

 $\Pi(k) = -\int_{0}^{k} \hat{T}(k) dk$ (flux function)

 spherical average of energy transfer function

Flux function

$I(\kappa)\Delta\kappa =$	$\sum_{k-\Delta k/2 < \mathbf{k} < k + \Delta k/2} I(\mathbf{k})$	(spherical average) To check energy conservation!
$\Pi(k) = -$	$\int_0^k \hat{T}(k) dk$	(flux function)
$D(k) = \int_{0}^{k} dk$	$2vk^2\hat{E}(k) dk$	(accumulated dissipation)

 ∇ T(1-)

 $\hat{T}(k) \wedge k = -$

- There is a constant flux region around 5<k<20
 - \longrightarrow inertial range in the sense of Kolmogorov
- Total flux goes back to 0, but not for Φ₁and Φ₂ fluxes
 - $\rightarrow \ \text{There is total energy} \\ \text{conservation, but there} \\ \text{is energy exchange} \\ \text{between } \Phi_1 \text{and } \Phi_2$

• Wide range of dissipation

→ dissipation seems enhanced by the wave flux 14/25

Verification with 2048³ (double precision)

15/22

Summary

- Energy spectra are investigated for stably stratified turbulence with 1024³ pseudospectal DNS simulations.
- Horizontal spectra show clear transition from 2D to 3D Kolmogorov spectra.
- Horizontal spectra are scaled by anisotropic dissipation of energy and enstrophy.
- Vertical spectra show a flat part at large scales and tend to have steeper spectrum(-3) as N becomes large.