
Development of The Efficient MHD Code Using Scalar-Parallel Machine
Tatsuki Ogino and Maki Nakao

(Solar-Terrestrial Environment Laboratory, Nagoya University)

In recent years, the supercomputer which can be used for large-scale numerical computation is
changing from the vector-parallel machine quickly to the scalar-parallel machine. Hitachi and
FUJITSU shift to marketing of a cluster type scalar-parallel machine even in Japan, and only
NEC is continuing development of the vector-parallel machine. Under such a situation, although
development of the program which works by a scalar-parallel machine efficiently serves as urgent
necessity, development of the efficient parallel computing program is a pending problem for ten
years these days, and is in the situation which cannot be referred to as having still succeeded also in
the USA and Europe. Since we found out one effective method of carrying out high-speed
computation with the scalar-parallel machine, and we present the main point of the method and the
result of the test calculation by the present carried out with the supercomputer containing
scalar-parallel machines, such as FUJITSU PRIMEPOWER HPC2500.

1. Introduction
The environment involving the supercomputer which performs computer simulation is changing
quickly. It is the shift to a scalar-parallel machine from a vector-parallel machine. In the USA and
Europe, it shifted to the scalar-parallel machine from about ten years before, and since it was
considered that a vector-parallel machine was a high cost overrun, it disappeared from the market
temporarily. However, the Earth Simulator of Japan which is a vector-parallel machine received the
honor of the supercomputer of a world maximum high speed in 2003 to 2004, and the tendency of
reappraisal of a vector-parallel machine happened. Then CRAY company started the development
production of the vector-parallel machine (CRAY X1E) again gaining assistance of the U.S.
Government. In Japan, first, Hitachi shifted to the scalar-parallel machine (Hitachi SR8000,
SR11000, called a pseudo-vector machine) from the vector-parallel machine, and FUJITSU also
followed it (PRIMEPOWER HPC2500). Only NEC was continuing development of a vector-parallel
machine in the 2004 fiscal year (NEC SX6, SX7and SX8).

The shift to a scalar-parallel machine from a vector-parallel machine took place rapidly because
many people believed that cost performance must be good. Then, did the scalar-parallel machine
have good cost performance more really than a vector-parallel machine? Although this was the
greatest point in question for the user, before the practical use program which actually needs
high-speed calculation of the supercomputer proved, it was actual that the shift to a scalar-parallel
machine advanced quickly. Although the absolute efficiency of about 40% had come out with the
vector-parallel machine by the program execution of large-scale calculation, in spite of having made
efforts in the world for ten years over, it has been said with the scalar-parallel machine that only
the absolute efficiency of 3-7% can reach. Isn't the wall of this low absolute efficiency exceeded? As a

result of variously examining the method for calculating by the scalar-parallel machine at high
speed, we found one effective solution with the possibility. Scalar-parallel type supercomputer
Fujitsu PRIMEPOWER HPC2500 was renewed in the Information Technology Center of Nagoya
University in 2005, while the test result by the method and present state is shown, prediction and
expectation and an initial test calculation result for PRIMEPOWER HPC2500 and other
supercomputers are described.

2. MHD Simulation Code.
We have carried out global computer simulation of interaction between the solar wind and the
earth's magnetosphere using the three-dimensional MHD (magnetohydrodynamic) simulation
code([1]-[7]). We have carried out global computer simulation of interaction between the solar
wind and the earth's magnetosphere using the three-dimensional MHD simulation code. On the
case in which IMF (interplanetary magnetic field) are south direction and north direction, the
example of magnetic field structure of the earth's magnetosphere is shown in Figure 1 as the axis of
intrinsic dipole magnetic field is tilted (The northern hemisphere is summer at the inclination angle
of 30 degrees,). In addition, it is the case in which IMF rotates in the plane north and south morning
and evening, and the example of the three-dimensional visualization ([5],[7], [9]) by VRML
(Virtual Reality Modeling Language) in the ejection of the plasmoid to the tail direction is shown in
Figure 2, after the IMF changes in south direction from the north direction. In such global model,
the outside boundary is put if possible in the distance in order to reduce the boundary effect, and
again, the improvement on the numerical method is carried out in order to raise spatial resolution,
and it is also indispensable to carry out the efficient utilization of the world largest supercomputer.
In the MHD model, MHD equation and Maxwell equation are solved using the Modified Leap-Frog
method as an initial and boundary value problem[8],[9].

Southward
IMF Bz
-5nT

Northward
IMF Bz
5nT

Tilt Angle θ=30°
Z

Z

X

X

15Re

15Re

-15Re

15Re

15Re

-15Re

-60Re

-60Re

3D Magnetic Field Line

Figure 2. Generating of the tail magnetic
reconnection and the global magnetospheric
structure in the ejection of the plasmoid to
the tail direction after IMF changes in south
direction from the north direction.

Figure 1. When Interplanetary Magnetic
Field (IMF) is for south and for north, the
magnetic field structure of the earth's
magnetosphere is demonstrated.

The structure of the parallelization Fortran MHD code using MPI (Massage Passing Interface)
([10]-[16]) which makes possible parallel computing required for a large scale simulation is shown
in Figure 3 ([8], [9]). The Modified Leap-Frog method becomes the 2 step calculation as well as the
Two step Lax-Wendroff method. Features of parallel computing in the MHD code using MPI are to
arrange the necessary communication by parallel computing of the distributed memory in just
before of the calculation of each time step. The method for effectively utilizing this consolidation
communication is a very important point for making the efficient parallel computing program.

３．Parallel Computation by the Domain Decomposition Method
In parallel computation using the parallel computer of the distributed memory type, it is usual to
use domain decomposition method for the three-dimensional arrangement ([8],[9]). In case of the
three-dimensional model, it is possible to choose the dimension of the domain decomposition at one
dimension, two dimensions and three dimensions. The computation time and the communication

()

()

()

()

() (5)

(4)

(3)

)2(111

(1)

2

2

2

　　　　　　　　　　　　

　　　　　　　　　

　　　　　　

　　　

　　　　　　　　　　　

d

p

t

pDpp
t
p

p
t

D
t

BBJ

BBv

vv

gBJvvv

v

−×∇=

∇+××∇=
∂
Β∂

∇+⋅∇−∇⋅−=
∂
∂

Φ++×+∇−∇⋅−=
∂
∂

∇+⋅−∇=
∂
∂

η

γ

ρρρ

ρρρ

＜The fundamental equation＞
MHD and Maxwell equations as a base of the
MHD model

Set of calculation environment

Initial value

Read of the previous data

Boundary condition

Transfer of the data during regional divisions (send+recv)

Calculation of First Step

Transfer of the data during regional divisions (send+recv)

Calculation of Second Step

Correction of the inner boundary

Renewal of the upstream boundary

Write of sampling data

End of calculation
Figure 3. The fundamental structure of the
three dimensional MHD code using MPI.

time in the cases can be generally estimated as following.
 Computation time Communication time

One-dimensional domain decomposition Ts=k1 N3 /P Tc=k2 N2 (P-1)
Two-dimensional domain decomposition Ts=k1 N3 /P Tc=2k2 N2 (P1/2 -1)
Three-dimensional domain decomposition Ts=k1 N3 /P Tc=3k2 N2 (P1/3 -1)

Here, k1 and k2 are fixed constant coefficients, and N is variable quantity of the 1 direction in the
three-dimensional arrangement, and P is a number of parallel CPUs. The sum total of computation
time and communication time is needed for parallel computing. Parallel computation efficiency by
the domain decomposition is shown in Figure 4. The computation time, Ts is in inverse proportion
for number of CPU, P, and it shortens. Communication time, Tc is lengthened with the increase in P.
However, the aspect in which the communication time is lengthened is greatly different by 1, 2,
3-dimensional domain decompositions. That is to say, the following can be understood: That the
three-dimensional domain decomposition can shorten the communication time most and that the
difference is large even in one dimension and two-dimensional domain decomposition. However, in
this comparison, it is assumed that coefficient k2 which decides the communication time is same,
and the condition can be also realized by the contrivance of the program of the communication part.
In this way, it can be anticipated that the three-dimensional domain decomposition will be the most
efficient in the scalar-parallel machine, and the two-dimensional domain decomposition will be the
most efficient in the vector-parallel machine with large number of CPUs.

Next the gist of the concrete introduction method of the three-dimensional domain decomposition
will be shown in the three-dimensional global MHD code. In the case of the example of the following
which performs domain decomposition in three-dimensional space (x, y, z) using MPI ([10], [14],
[15]), it becomes respectively the x, y, z direction in bisection (npex=2, npey=2, npez=2) in the
whole with the npe=npex*npey*npez=8 decomposition, and 8 CPU's are used. Arrangement
variable which enters each CPU is divided, the arrangement of f (nb,0:nxx+1,0:nyy+1,0:nzz+1) is
assigned, and nb=8 is a number of the component of MHD equation. That is to say, data of 1 plane

Figure 4. Parallel computing efficiency by 1, 2, 3-dimensional
domain dividing method. Parallel computing time is the sum of
computation time (Ts) and communication time (Tc).

Number of Processors （P）

1

101

102

103

104

1041031021011
1

101

102

103

104

1-dimension

2-dimension

3-dimension

P
Ts

1
∝

)1(1 −∝ PTc

)1(2 2
1

2 −∝ PTc

)1(3 3
1

3 −∝ PTc

C
om

putation Tim
e （Ts

）

C
om

m
unication Tim

e (Tc)

in both sides is applied on the arrangement variable in the three-dimensional direction which exists
for CPU of the neighbour originally divided into regions each. itable(-1 : npex,-1 : npey,-1 : npez) is
reference table for the data transfer between CPU's with wild card. Moreover, ftemp1x, ftemp2x, etc.
are the buffer arrangement of the two-dimensional boundary surface prepared for consolidation
data transfer. Like this, the data transfer between the distributed memories which occur for
three-dimensional domain decomposition can be simply and efficiently executed by preparing
reference table and buffer arrangement.

<<The method of the three-dimensional domain decomposition.>>
CC MPI START

 parameter (npex=2,npey=2,npez=2)

 parameter (npe=npex*npey*npez,npexy=npex*npey)

 integer itable(-1:npex,-1:npey,-1:npez)

c

 parameter(nzz=(nz2-1)/npez+1)

 parameter(nyy=(ny2-1)/npey+1)

 parameter(nxx=(nx2-1)/npex+1)

 parameter(nxx3=nxx+2,nyy3=nyy+2,nzz3=nzz+2)

c

 dimension f(nb,0:nxx+1,0:nyy+1,0:nzz+1)

 dimension ftemp1x(nb,nyy3,nzz3),ftemp2x(nb,nyy3,nzz3)

 dimension ftemp1y(nb,nxx3,nzz3),ftemp2y(nb,nxx3,nzz3)

 dimension ftemp1z(nb,nxx3,nyy3),ftemp2z(nb,nxx3,nyy3)

c

The program of the data transfer between distributed memories is very much simplified, as it will
be shown next. To begin with, by using wild card in conversion table, itable, there is no peculiarity
in the edge of the x, y, z direction in the program. There is no necessity of using conditional
sentences such as if sentence. Next, by preserving the data of yz plane in the left end of the x
direction of f (nb,0:nxx+1,0:nyy+1,0:nzz+1) at buffer arrangement ftemp1x at ftemp1x=f (:,is,:,:)
temporarily, it is lumped together and is transferred from ftemp1x of CPU of ileftx to ftemp2x of
CPU of irightx at mpi_sendrecv. By moving in the data of yz plane added to right end of the x
direction of f (nb,0:nxx+1,0:nyy+1,0:nzz+1) using f (:,ie+1,:,:)=ftemp2x in continueing, the data
transfer is completed. By doing like this, it is possible that the data of both sides in each direction
divided three-dimensional and into regions is easily transferred the consolidation between CPU's
with the distributed memory. In this method, conditional sentences such as if and do loop are
completely unnecessary, as it is clear by the program. From the fact, it can be guessed that the
overhead by the three-dimensional domain decomposition which becomes a problem in the
comparison with one-dimensional domain decomposition will not occur almost. As a result, it is
possible to equalize proportion coefficient of communication time, Tc in 1, 2 and 3-dimensional
domain decomposition almost, as it is shown in Figure 4.

<<The data transfer between divided CPU's>>

CC MPI START

 irightx = itable(irankx+1,iranky,irankz)

 ileftx = itable(irankx-1,iranky,irankz)

 irighty = itable(irankx,iranky+1,irankz)

 ilefty = itable(irankx,iranky-1,irankz)

 irightz = itable(irankx,iranky,irankz+1)

 ileftz = itable(irankx,iranky,irankz-1)

c

 ftemp1x=f(:,is,:,:)

 ftemp1y=f(:,:,js,:)

 ftemp1z=f(:,:,:,ks)

 call mpi_sendrecv(ftemp1x,nwyz,mpi_real,ileftx,200,

 & ftemp2x,nwyz,mpi_real,irightx,200,

 & mpi_comm_world,istatus,ier)

 call mpi_sendrecv(ftemp1y,nwzx,mpi_real,ilefty,210,

 & ftemp2y,nwzx,mpi_real,irighty,210,

 & mpi_comm_world,istatus,ier)

 call mpi_sendrecv(ftemp1z,nwxy,mpi_real,ileftz,220,

 & ftemp2z,nwxy,mpi_real,irightz,220,

 & mpi_comm_world,istatus,ier)

c

 f(:,ie+1,:,:)=ftemp2x

 f(:,:,je+1,:)=ftemp2y

 f(:,:,:,ke+1)=ftemp2z

CC MPI END

The actual three-dimensional MHD code of 1, 2 and 3-dimensional domain decomposition can be
seen by the homepage shown later ([9], [17]).

４．Comparison of Computation Efficiency of MHD Code Using Domain Decomposition Method
The shell when compiling and carrying out the three-dimensional MHD code written using MPI by
scalar-parallel-processing supercomputer FUJITSU PRIMEPOWER HPC2500 of the Information
Technology Center is indicated to be (A) to (B) ([10], [11], [13]). (A) is use of only process parallel of
128 CPU, and (B) is a case where 32 process parallel and 4 thread parallel (automatic parallel) ([12],
[13]) are used together using 128 CPU. Moreover, although the option of compile shows the thing
when the greatest calculation efficiency is acquired, especially now, it is not necessary to specify
these options. Although it was not used this time, the comment that it is also effective in
improvement in the speed by thread parallel adding a compile option (it turning off by a default)
called -Khardbarrier which enables the barrier function between threads is gotten from FUJITSU.

(A) Compile and execution of MPI Fortran program
 use 128 processors
 128 process parallel

mpifrt -Lt progmpi.f -o progmpi -Kfast_GP2=3,V9,largepage=2 -Z mpilist
qsub mpiex_0128th01.sh

hpc% more mpiex_0128th01.sh
@$-q p128 -lP 128 -eo -o progmpi128.out
@$-lM 8.0gb -lT 600:00:00
setenv VPP_MBX_SIZE 1128000000
cd ./mearthd4/
mpiexec -n 128 -mode limited ./progmpi128

(B) Compile and execution of MPI Fortran program
 use 128 processors
 32 process parallel
 4 thread parallel (sheared memory)

mpifrt -Lt progmpi.f -o progmpi -Kfast_GP2=3,V9,largepage=2 -Kparallel -Z mpilist
qsub mpiex_0128th04.sh

mpiex_0128th04.sh
@$-q p128 -lp 4 -lP 32 -eo -o progmpi01.out
@$-lM 8.0gb -lT 600:00:00
setenv VPP_MBX_SIZE 1128000000
cd ./mearthd4/
mpiexec -n 32 -mode limited ./progmpi

First, using FUJITSU PRIMEPOWER HPS2500, the result of having compared the calculation
efficiency of the three-dimensional MHD code (the one-dimensional domain decomposition
technique) the case of only process parallel and at the time of using process parallel and thread
parallel together is shown in Table 1. The table showed the computation time which 1 time of a time
step advance takes, calculation speed (GFLOPS), and the calculation speed (GFLOPS/CPU) per 1
CPU to the total number of CPUs, process parallel number, and thread parallel number which were
used. It is necessary to set a process parallel number over to two, because it is a FORTRAN
program of MPI. Moreover, a thread parallel number will also be automatically chosen or less as 64
from the restrictions. In the case of 128 CPU, the case of only process parallel has the best
calculation efficiency, but also in the case of combined use of process parallel and thread parallel, so
much equal calculation efficiency has come out. However, if a thread parallel number becomes large
like 32 and 64, the tendency for calculation efficiency to deteriorate will be seen.

Table 1. Calculation efficiency of the MHD code using thread parallel by PRIMEPOWER HPC2500
Toal number Process Thread Computation Calculation Calculation

of CPUs parallel parallel time speed speed/CPU

 number number

 (sec) (GFLOPS) (GFLOPS/CPU)

1-dimensional decomposition by f(nx2,ny2,nz2,nb)=f(522,262,262)
 4 4 - 12.572 5.98 1.494
 8 8 - 6.931 10.84 1.355
 16 16 - 3.283 22.88 1.430
 32 32 - 1.977 38.00 1.187
 64 64 - 1.108 67.81 1.060
 128 128 - 0.626 120.17 0.939
 128 64 2 0.692 108.77 0.850
 128 32 4 0.697 107.80 0.842
 128 16 8 0.637 118.07 0.922
 128 8 16 0.662 113.57 0.887
 128 4 32 0.752 100.07 0.782
 128 2 64 0.978 76.95 0.601
 256 128 2 0.496 151.45 0.592
 256 64 4 0.439 171.23 0.669
 256 32 8 0.429 174.94 0.683
 256 16 16 0.460 163.43 0.638
 256 8 32 0.577 130.45 0.510
 512 128 4 0.424 177.63 0.347
 512 64 8 1.452 51.80 0.101
 512 32 16 0.297 253.64 0.495
 512 16 32 0.316 238.37 0.466
3-dimensional decomposition by f((nb,nx2,ny2,nz2)=f(8,522,262,262)
 512 512 1 0.0747 1007.78 1.968
 512 256 2 0.0947 794.75 1.552
 512 128 4 0.486 154.84 0.302
 512 64 8 0.628 119.77 0.234
3-dimensional decomposition by f((nb,nx2,ny2,nz2)=f(8,1024,1024,1024)
 512 512 1 2.487 916.94 1.791
 1024 512 2 1.448 1575.09 1.538
3-dimensional decomposition by f((nb,nx2,ny2,nz2)=f(8,2046,2046,2046)
 512 512 1 19.694 929.13 1.815
 1024 512 2 10.763 1700.12 1.660
 1024 256 4 15.648 1169.36 1.142
 1536 512 3 7.947 2302.60 1.499
 1536 256 6 16.462 1111.54 0.724

When there is restriction which a big shared memory is required or cannot take large process
parallel, generally you have to use thread parallel ([12], [13]). For example, in the case of the
three-dimensional MHD code of one-dimensional domain decomposition of the direction of z of Table
1, it is necessary to take a process parallel number from restriction of an external boundary
condition setup below in half of the array variable (nz2=nz+2=262) of the direction of z. Therefore,
when the number of CPU becomes over 256, thread parallel will be used inevitably. Thus, in
three-dimensional MHD code, when process parallel and thread parallel need to be used together, if
a thread parallel number is taken about to 4 to 16, it proves that efficient calculation can be
performed. Of course, although it seems that whether high efficiency will be acquired if what
number of threads is used depends to a program strongly, what is necessary is likely to be just to
start with first of all trying the number of threads which are not out of less than 16. Although Table
1 shows only the data which the maximum parallel computing speed was obtained, when increasing
the number of threads, the variation in calculation speed appears considerably. Although this is

considered to be also balance with data communications, in actual calculation, it is also likely to
happen that calculation speed becomes slow to a slight degree. Moreover, there is no data in the
case of 64 threads at 256CPU and 512CPU. This is because it was not able to perform by a work
domain being insufficient.

In scalar-parallel machine PRIMEPOWER HPC2500, because CPU in a node can be treated as a
shared memory, it can carry out automatic parallelization of it using functions, such as thread
parallel. When the three-dimensional MHD code of one-dimensional domain decomposition was
used, the number of CPU was fixed to 128 from Table 1, and the efficiency of the automatic
parallelization by thread parallel was shown in the graph of Fig. 5. In this case, between the
number of CPU, a process parallel number, and a thread parallel number, the relation of "(process
parallel number) x (thread parallel number) = (the number of CPU)" is required, and a thread
parallel number is restricted to the number of CPU in a node. Although Figure 5 shows the
calculation speed (Gflops) at the time of increasing a thread parallel number, and the calculation
speed (Gflops/CPU) per 1CPU, because the number of CPU is fixed to 128, a difference does not
appear in both graph. When thread parallel numbers are 8 and 16, calculation efficiency is
increasing, but it takes for increasing a thread parallel number further like 32 and 64, and
calculation efficiency deteriorates. Change of the calculation speed (Gflops) at the time of increasing
the number of CPU by PRIMEPOWER HPC2500 and the calculation speed (Gflops/CPU) per 1CPU
is shown in Figure 6. Calculation speed here shows a result when the maximum calculation speeds
also including thread parallel use are obtained to the fixed number of CPU. That the maximum
calculation speed was obtained was a case where 512CPU did not use thread parallel, but the
three-dimensional MHD code of three-dimensional domain decomposition was used when it is what
is called flat MPI use of only process parallel. When the number of CPUs is 1024, a thread parallel
number is 2, the number of CPUs is 1536, a thread parallel number is a case of 3, and a process
parallel number was set to a maximum of 512, it was the fastest. When the three-dimensional MHD
code of three-dimensional domain decomposition is used, it proves that scalability is extended quite
well to 1536CPU.

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

C
o
m
pu
ta
ti
o
n
 S
pe
e
d
(G
fl
o
ps
)

C
o
m
pu
ta
ti
o
n
 S
pe
e
d
pe
r
P
ro
c
e
ss
o
r

No. of threads No. of threads

Figure 5. Calculation speed (Gflops) and calculation speed per 1CPU (Gflops/CPU) at the time of
fixing the number of CPUs to 128 by PRIMEPOWER HPC2500, and increasing a thread parallel
number.

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000
0

500

1000

1500

2000

2500

0 500 1000 1500 2000
0

500

1000

1500

2000

2500

0 500 1000 1500 2000

C
o
m
pu
ta
ti
o
n
 S
pe
e
d
(G
fl
o
ps
)

C
o
m
pu
ta
ti
o
n
 S
pe
e
d
pe
r
P
ro
c
e
ss
o
r

No. of Processors No. of Processors

Figure 6. Calculation speed (Gflops) and calculation speed per 1CPU (Gflops/CPU) at the time of
increasing the number of CPUs by PRIMEPOWER HPC2500.

Interesting data was obtained in the case that the size of an array is f (8,522,262,262) in
three-dimensional MHD code of three-dimensional domain decomposition, when it fixed to 512CPU
and process parallel and a thread parallel number were changed. Only in 512 process parallel, the
maximum calculation speed obtained 1007GFLOPS. On the other hand, when the thread parallel
number was increased, calculation speed fell for a while by 2 thread parallel, and calculation speed
fell still more greatly by 4 and 8 thread parallel. Especially the difference of the calculation speed in
the case of being parallel is as important as 64 process parallel 8 threads at 512 process parallel and
512CPU use. It was used the same four division in the latter also as x, y, and the direction of z.
Although the latter was also expected that calculation speed almost comparable as the former
comes out, it was different in practice. It is thought that this result means that the method which is
going to make the amount of communications the minimum using the three-dimensional domain
dividing method, and the method of the automatic parallelization in 8 thread parallel do not have
consistency well. That is, what ordering of the array variable f(nb,nx2,ny2,nz2) in 8 thread parallel

is made is likely to pose a problem. Moreover, in a big array, the tendency which f(8, 1024, 1024,
1024) and f (8, 2046, 2046, 2046) also resembled is seen. These are considered also as it has
suggested that automatic parallel optimization and optimization of user parallel are necessarily
incompatible. When 4 thread parallel and 6 thread parallel are especially specified by 1024CPU
and 1536CPU use to the array of f (8, 2046, 2046, 2046), respectively, parallel computing efficiency
does not increase but is falling rather. The comment that the compile option of -Khardbarrier which
enables the barrier function between threads to calculation efficiency degradation at the time of
increasing this thread parallel number will probably be effective is gotten from FUJITSU. However,
the check has not been carried out yet.

The comparison of computation efficiency of the three-dimensional MHD code in the case which
used 1, 2 and 3-dimensional domain decomposition method is shown in Table 2. The numerical
value showed calculation speed (GF/PE) for CPU per 1. VPP5000, NEC SX6, NEC ES (Earth
Simulator) are vector-parallel machine. PRIMEPOWER HPC2500 and Hitachi SR8000 are the
clustery scalar-parallel machine. In the three-dimensional domain decomposition method, there are
2 kinds of codes. Order of the arrangement is x, y, z direction at first and vector component (8
pieces) at late on f (nx2,ny2,nz2,nb). f (nb,nx2,ny2,nz2) moves the vector component (8 pieces) to
the head of the arrangement in order to memorize the variable which is related to the calculation
near. By the exchange of this sequence, in the scalar-parallel machine, rate of hit of the cache rises,
and the improvement on the computation efficiency is expected, and in PRIMEPOWER HPC2500,
the effect has remarkably appeared. In the result of vector-parallel machine NEC ES using 512
CPU, the two-dimensional domain decomposition which utilized the vectorization in the x direction
is the most efficient.

Table 2. Comparison of the calculation efficiency in the three-dimensional MHD code
--
Computer Processing Capability by 3D MHD Code for (nx,ny,nz)=(510,254,254)
--
 CPU VPP5000 PRIMEPOWER PRIMEPOWER NEC SX6 NEC ES Hitachi Hitachi
 Number HPC2500 HPC2500 SR8000 SR11000/j1
 (GF/PE) (1.3GHz) (2.08GHz) (GF/PE) (GF/PE) (GF/PE) (GF/PE)
--
1D Domain 2 7.08 ----- ----- 6.36 6.66
Decomposition by 4 7.02 0.031 0.039(1.494) 5.83 6.60 0.182
f(nx2,ny2,nz2,nb) 8 6.45 0.030 0.037(1.355) 5.51 6.50 0.016
 16 6.18 0.028 0.046(1.430) 5.44 6.49
 32 (7.49) 0.042(1.187) 6.39
 64 (6.90) 0.040(1.060) 6.37
 128 0.039(0.907) (2.11)
 256 0.016(0.683, 2 thread)
 512 0.003(0.347, 4 thread)

2D Domain 4 7.51 0.199 1.529 6.34 6.63 0.775
Decomposition by 8 6.88 0.191 1.451 6.28 6.47
f(nx2,ny2,nz2,nb) 16 6.49 0.200 1.575 6.23 6.45
 32 1.395 6.47
 64 1.421 6.32
 128 1.409 6.27
 256 1.396 6.05
 512 0.868 5.62

f(2048,1024,1024,8)1024 (MPI) 7.18(7.36 TF)
f(1024,1024,1024,8) 512 (HPF/JA) 6.47(3.31 TF)

3D Domain 8 7.14 0.207 1.558 6.24 6.38 0.253 0.869
Decomposition by 16 6.77 0.202 1.593 6.34 6.33
f(nx2,ny2,nz2,nb) 32 1.527 6.25
 64 1.534 5.61
 128 1.518 5.57
 256 1.513 5.38
 512 0.923 3.94

3D Domain 8 2.91 1.438 2.038 1.13 4.11 0.268 2.221
Decomposition by 16 2.63 1.416 2.099 4.53 4.06
f(nb,nx2,ny2,nz2) 32 1.820 4.11
 64 1.813 4.17
 128 1.857 4.12
 256 1.831 4.12
 512 1.968 3.70

f(8,1024,1024,1024) 512 (MPI) 1.791(0.917 TF)
f(8,1024,1024,1024)1024 (MPI, 2 thread) 1.538(1.575 TF)
f(8,2048,2048,2048) 512 (MPI) 1.815(0.929 TF)
f(8,2048,2048,2048)1024 (MPI, 2 thread) 1.660(1.700 TF)
f(8,2048,2048,2048)1024 (MPI, 4 thread) 1.142(1.169 TF)
f(8,2048,2048,2048)1536 (MPI, 3 thread) 1.499(2.303 TF)
f(8,2048,2048,2048)1536 (MPI, 6 thread) 0.724(1.112 TF)
--

In order for a scalar-parallel machine to realize high efficiency, it has been proposed that it is
important to perform to raise rate of hit of the cache and three-dimensional domain decomposition,
and to reduce the amount of communications. The importance of that can be clearly known by the
result which is 512 CPU of RIMEPOWER HPC2500 in Table 2. The calculation result of the 2 or
3-dimensional domain decomposition by PRIMEPOWER HPC2500 uses only process parallel
altogether to 512CPU. In the one-dimensional domain decomposition, the very bad result has come
out by HPC2500. This is because grid size (nx,ny,nz)=(510,254,254) which includes a boundary in

three-dimensional MHD code was taken to the power of 2 (512=510+2,256=254+2). However, if grid
size was changed into (nx,ny,nz)=(520,260,260), efficiency will have been greatly improved like the
numerical value shown in a parenthesis. Namely, when the size of the array of the domain
decomposition direction is taken to the power of 2 and the number of CPU is also taken to the power
of 2, it is thought that the phenomenon in which competition of memory access arose and
calculation speed deteriorated extremely occurred ([12], [13]). Therefore, even when high efficiency
is not acquired first, if making even a small change of changing some numbers of CPU, and sizes of
an array, it proved that it is calculable at high speed without a big problem for almost all the
conventional MHD code .

When the number of CPUs is increased, using the three-dimensional MHD code(3Da) of the one(1D),
two(2D) and three-dimensional domain decomposition using the conventional array f(nx2, ny2, nz2,
nb) and the three-dimensional MHD code (3Db) of the three-dimensional domain decomposition
which changed an order of the array and f (nb, nx2, ny2, nz2), scalar-parallel machine
PRIMEPOWER HPC2500 is shown in Figure 7, and the vector-parallel machine ES (Earth
Simulator) is shown in Figure 8 for how the tendency of calculation speed change is seen. However,
the size of an array uses (nx, ny, nz) = (510,254,254) except for one-dimensional domain
decomposition, and ss Table 2 explained only in one-dimensional domain decomposition, in order to
avoid extreme degradation from the size of an array including a boundary becoming a the power of 2,
(nx, ny, nz) = (520,260,260) was used. Because the difference in the size of the array is converted, it
can measure directly the calculation speed (Gflops) between four kinds of MHD codes, and the
calculation speed (Gflops/CPU) per 1CPU even in Figure 7. First, in the case of scalar-parallel
machine PRIMEPOWER HPC2500 of Figure 7, since calculation speed is quick from 1D in 2D, the
effect which reduced the amount of communications can be seen from having changed to
two-dimensional domain decomposition from one dimension. However, change of remarkable
calculation speed is not seen between 2D and 3Da. This is considered that the hit ratio of cash is
because it is not good similarly. Here, in order to improve the hit ratio of cash, in the
three-dimensional domain decomposition (3Db) which changed an order of the array, calculation
speed is greatly improved to 512 CPU, and scalability is seen be very good. Thus, in the
scalar-parallel machine, it was checked to 512 CPU that very good parallel computing efficiency can
be acquired by devising an order of an array in order to improve the hit ratio of cash, and using the
three-dimensional domain dividing method.

On the other hand, in the vector-parallel machine Earth Simulator of Figure 8, two-dimensional
domain decomposition (2D) keeps the merit of scalability the best to 512CPUs as expected. Because
this uses do loop inside the maximum for vectorization, since vectorization efficiency becomes good
in the one where the vector length is longer, and since the amount of communications was
simultaneously reduced using two-dimensional domain decomposition, it is thought that the
highest calculation speed was obtained. This is seen more notably than the case where enlarged the

array and the number of CPUs is increased with 1024 as shown in Table 2. Moreover, the difference
in the vectorization efficiency which vector length depends is a difference of 3Da and 3Db, that is,
3Da has brought a result with quick calculation speed rather than 3Db. If the number of CPUs
becomes large 512, although the calculation speed of 3Da becomes slow and the calculation speed of
3Db is approached, it thinks because the do loop length inside the maximum became short with
512/8=64. In Earth Simulator, the difference of 3Da and 3Db is small rather. Furthermore, it seems
that it should be surprised that the difference of 2D and 3Db is not large, either. Although it
expected that a difference generally came out more, since the data transfer between CPUs is very
excellent in Earth Simulator at high speed, three-dimensional domain decomposition (3Da and 3D
b) can also be understood that parallel computing speed seldom falls. Moreover, although
calculation speed has deteriorated in one-dimensional domain decomposition of 256CPU use of
Figure 8, since the variable of the domain decomposition direction is set to nz+2=256 including a
boundary, and the number of parallelization nodes has the necessity which should be set below to
the half, it is thought that it is because automatic parallel was used only in that case. The further
investigation is required for this point. It was checked that very good vector-parallel computing
efficiency can be acquired from these results by using the two-dimensional domain dividing method
in a vector-parallel machine.

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

1D
2D
3Da
3Db

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

1D
2D
3Da
3Db

No. of Processors No. of Processors

C
o
m
pu
ta
ti
o
n
 S
pe
e
d
(G
fl
o
ps
)

C
o
m
pu
ta
ti
o
n
 S
pe
e
d
pe
r
P
ro
c
es
so
r

(G
fl
o
ps
/
pr
o
ce
ss
o
r)

Figure 7. Calculation speed (Gflops) to four kinds of MHD codes (1D : One-dimensional domain
decomposition, 2D : Two-dimensional domain decomposition, 3Da：Three-dimensional domain
decomposition and f(nx2,ny2,nz2,nb), 3Db:Three-dimensional domain decomposition and
f(nb,nx2,ny2,nz2)) at the time of increasing the number of CPUs by scalar-parallel machine
PRIMEPOWER HPC2500, and calculation speed per 1CPU (Gflops/CPU)

No. of Processors No. of Processors

C
o
m
pu
ta
ti
o
n
 S
pe
e
d
(G
fl
o
ps
)

C
o
m
pu
ta
ti
o
n
 S
p
e
e
d
 p
e
r
P
ro
c
es
so
r

(G
fl
o
ps
/
pr
o
c
e
ss
o
r)

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600

1D
2D
3Da
3Db

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500 600

1D
2D
3Da
3Db

Figure 8. Calculation speed (Gflops) to four kinds of MHD codes (1D : One-dimensional domain
decomposition, 2D : Two-dimensional domain decomposition, 3Da：Three-dimensional domain
decomposition and f(nx2,ny2,nz2,nb), 3Db:Three-dimensional domain decomposition and
f(nb,nx2,ny2,nz2)) at the time of increasing the number of CPUs by Vector-parallel machine (Earth
Simulator), and calculation speed per 1CPU (Gflops/CPU)

As a left-behind problem, the period until 128 parallel is possible in a program in one-dimensional
domain decomposition, when using 256CPU, the combination of 128 process parallel and 2 thread
parallel needed to be used, when using 512CPU, the combination of 128 process parallel and 4
thread parallel needed to be used. When the hard transfer function of data is turned OFF (-ldt=0) in
these cases also in the case of the grid of (nx, ny, nz) = (520,260,260), calculation speed falls
considerably. Moreover, the result which falls extremely was obtained in 512CPU. However, if the
data transfer unit was turned ON (- ldt=1), the fall tendency of the calculation efficiency will have
improved greatly. Moreover, because it is restricted to until a maximum of 512 process parallel in
PRIMEPOWER HPC2500 of Nagoya University, in 1024CPU use, the combination of 512 process
parallel and 2 thread parallel is used, and in 1536CPU use, the combination of 512 process parallel
and 3 thread parallel will be used. However, in the combination of the process parallel and thread
parallel which uses these many CPU, in the test of hard transfer function OFF (- ldt=0) of data, the
efficiency of parallelization did not become good but was getting very worse. However, if the
function was turned ON (- ldt=1), calculation efficiency will have improved remarkably so that the
result of f (8, 1024, 1024, 1024) and f (8, 2046, 2046, 2046) at the time of using the
three-dimensional domain dividing method of Tables 1 and 2 may show. Thus, when using the
hard-data transfer function and using the three-dimensional domain dividing method, it has
checked that scalability was extended very well to 1536CPU use. We notices one more point, when
using many CPU, the method of reducing a process parallel number and increasing a thread
parallel number is causing degradation of calculation efficiency. This tendency has appeared
notably in the result of f (8,522,262,262) , f (8, 1024, 1024, 1024), and f (8, 2046, 2046, 2046) at the
time of using the three-dimensional domain dividing method of Table 1. The result by these present
is considered also as the method (for example, flat MPI) of using only user parallel compared with

the method of combining the respectively optimal user parallel and automatic parallel is pointing to
the view that efficient parallel computing is realizable. The numerical value in the parenthesis of
VPP5000 shows for comparison what calculation speed of the peak price had come out by 32-64PE
until now.

Actually, in three-dimensional MHD code which was usually being moved by 16CPU of VPP5000,
the speed of 110-120 GFLOPS had come out. If the same code is moved by PRIMEPOWER
HPC2500, 80-90GFLOPS comes out by 64CPU, 90-140GFLOPS has come out by 128 CPU, and
conventional calculation can be continued as it is. Of course, in three-dimensional MHD code which
had realized high efficiency by VPP5000, if a CPU number increases further, the tendency for
calculation speed to be saturated will be seen. If process parallel and thread parallel are used
together and change of calculation speed is investigated, when using thread parallel together, 6-7%
calculation speed may improve. It mentioned above when a data transfer unit is not used, the
tendency restricted when it does not have so much CPU that calculation efficiency improves by
thread parallel combined use (less than 128-256 CPU) is accepted. However, if the hard transfer
function of data is turned ON, the maximum of the CPU number will go up considerably. In this way,
combined use of process parallel and thread parallel can also expect achievement of quite high
parallel computing efficiency.

５．Outline of Renewal Supercomputer and Anticipation and Survey to High-Speed Calculation
The outline of the supercomputer of the Information Technology Center of Nagoya University is
shown below. It was updated in March, 2005 from conventional vector-parallel machine Fujitsu
VPP5000/64 to scalar-parallel machine Fujitsu PRIMEPOWER HPC2500 ([10], [11]).

＜The supercomputer＞

Fujitsu PRIMEPOWER HPC2500 23 node

 （64CPU／memory 512GB × 22 node、128CPU／memory512GB × 1 node）

The total performance ：12.48Tflops

All memory capacities ：11.5TB

The disk capacity ：50TB

By the renewal, how to become high-performance, is shown at catalog performance ratio of
VPP5000/64 and PRIMEPOWER HPC2500 about supercomputing 4 function of calculation speed,
the main memory, magnetic-disk capacity, and network speed in Figure 9. By updating to
scalar-parallel machine PRIMEPOWER HPC2500 from vector-parallel machine VPP5000/64,
theoretical performance becomes good sharply. However, because there is relative inefficiency of a
scalar-parallel machine, it is dangerous to expect the improvement in performance easily. It was
expected as follows whether high-speed calculation would be how far expectable by PRIMEPOWER
HPC2500 after updating based on the conventional test. Then, test calculation was carried out, and
the survey result was also added to Table 3.

If the anxiety at the time of updating is written collectively ([8], [9]), especially degradation in MHD
code of the one-dimensional domain decomposition which had realized high efficiency with the
vector-parallel machine may be miserable, and calculation efficiency may fall to 1/10 of VPP5000/64.
If it becomes such a situation, the conventional three-dimensional MHD code will not become useful
at all. Two and three-dimensional domain decomposition are likely to be adopted well, and
comparable calculation efficiency expects at last. When the MHD code of the three-dimensional
domain decomposition which rearranged the array variable is used, 3.4TFLOPS may be able to
expect by the most optimistic anticipation. However, it is important to actually perform whether
absolute efficiency becomes how much good in three-dimensional MHD code.

As mentioned above, updating to scalar-parallel machine PRIMEPOWER HPC2500 had much
source of anxiety. The results which actually carried out the operation start and which were
energetically tested from March, 2005 are Tables 1 and 2. It is Table 3 which was summarized as
survey. It became clear that the three-dimensional MHD code which demonstrated high efficiency
with the vector-parallel machine conventionally almost also has no change, and appropriate
improvement in the speed is realizable with these results. Actually, even as for the conventional
three-dimensional MHD code using the one-dimensional domain dividing method, calculation speed
of 116GF is realized by 128CPU and calculation speed of 175GF is realized by 256CPU. In this
way, the large-scale three-dimensional MHD simulation of space plasma was smoothly
maintainable satisfactorily also about the shift to scalar-parallel machine PRIMEPOWER
HPC2500 from vector-parallel machine VPP5000 of the Information Technology Center. Moreover,
in the case of the three-dimensional domain dividing method using the grid of (nx2, ny2, nz2) =
(2048, 2048, 2048), the following maximum high-speed values were able to be acquired: 929GF by
512CPU, １７００ＧＦ by 1024CPU, 2303ＧＦ by 1５３６CPU. If the compile option which enables the
above-mentioned barrier function between threads is used, the further improvement in the speed
expects.

Computation speed The cpu number
cpu 610 Gflops VPP5000 64

12.48 Tflops HPC2500 1536

Main memory Magnetic disk ＋ Graphics
1TB 17 TB Movie,
11.5 TB 50 TB Three-dimensional visualization

Network
SuperSINET (10 Gbps)

Figure 9. The comparison of PRIMEPOWER HPC2500/1536 and VPP5000/64 (The Information

Table 3. How can the high speed computation be expected at PRIMEPOWER HPC2500 ?

--

 VPP5000/64

The theory performance：9.6 GF x 64 = 614 GF

 The observation 410 GF (66.8%)

 PRIMEPOWER HPC2500/1536

 The theory performance：8.125 GF x 1536 = 12,480 GF

 Expectation value 3,400 GF (27.2%)

 GF/CPU CPU computation

 number efficiency speed

 The three-dimensional domain decomposition 1.416 x (8.125/5.2) x 1536 = 3,400 GF (27.2%)

 The two-dimensional domain decomposition 0.202 x (8.125/5.2) x 1536 = 485 GF (3.9%)

 The one-dimensional domain decomposition 0.028 x (8.125/5.2) x 1536 = 67 GF (0.5%)

 The observation

 GF/CPU CPU computation

 number efficiency speed

 The three-dimensional domain decomposition 1.831 x 256 = 469 GF (22.5%)
 1.968 x 512 = 1008 GF (24.2%)
 1.660 x 1024 = 1700 GF (20.4%)

 1.499 x 1536 = 2303 GF (18.5%)

 The two-dimensional domain decomposition 1.396 x 256 = 357 GF (17.1%)

 The one-dimensional domain decomposition 0.907 x 128 = 116 GF (11.1%)

--

６．Summary
The supercomputer of the Information Technology Center of Nagoya University, which has been
used at computer application cooperative research of Solar-Terrestrial Environment Laboratory,
was also renewed from vector-parallel machine Fujitsu VPP5000/64 to scalar-parallel machine
Fujitsu PRIMEPOWER HPC2500 in March, 2005. The variable (for example, x direction) of the do
loop of the most internal has been taken as long as possible, because it was important to improve
the vectorization efficiency first of all in the vector computer. In this way, it has succeeded in
making simplicity comparatively high-efficient parallel program even in either methods such as 1, 2,
3-dimensional domain decomposition and MPI and HPF (High Performance Fortran) ([6],[8]).
However, it is the inadequate to take the variable of the do loop of the most internal in the long
variable like the space one-direction, because rate of hit of the cache is the most important, in the
scalar-parallel machine. For example, it is desirable that 8 vector components of MHD equation to
which be directly concerned in the calculation are taken. In this way, when especially CPU
increased, it was feared whether many programs which had realized high efficiency with the
vector-parallel machine would face the problem which cannot raise high efficiency with a
scalar-parallel machine at all. However, it has proved clearly that appropriate improvement in
the speed can be realized without hardly changing the three-dimensional MHD code which
demonstrated high efficiency with the vector-parallel machine conventionally by PRIMEPOWER

HPC2500, either. Ｍoreover, in three-dimensional MHD code (3D Domain Decomposition by f (nb,
nx2, ny2, nz2)) using improvement in a hit ratio of cash and three-dimensional domain
decomposition, the maximum high-speed value (they are 929GF at 512CPU) is acquired only by the
process parallel by MPI, and it has checked that scalability was also very good. However, in order to
acquire such high efficiency, it is indispensable to use the hard transfer function of data.

In the present system of FUJITSU PRIMEPOWER HPC2500 because the maximum of process
parallel is 512, when using CPU beyond it, process parallel and thread parallel need to be used
together ([10]-[13]). Improvement in the speed was unrealizable in the combination of the process
parallel exceeding 512CPU, and thread parallel with the test result of hard transfer function OFF
of the early data. However, if it was made hard transfer function ON of data, the parallel computing
efficiency exceeding the 512CPU will have improved remarkably. In this way, in the
three-dimensional MHD code using three-dimensional domain decomposition of f (8, 2046, 2046,
2046) which enlarged the scale of calculation, the maximum high speed of 1.7TFLOPS was able to
be obtained by combined use of the process parallel (512) using 1024CPU, and thread parallel (2).
Furthermore, the maximum high speed of 2.3 TFLOPS was able to be obtained by 1536CPU. Thus,
when using process parallel and thread parallel together well, it proved that remarkable parallel
computing efficiency is actually acquired. However, when using CPU of such a large number, and
the number of threads is increased, there is a tendency for parallel computing efficiency to fall
conversely. This is directly related also to the question of the following most fundamental parallel
computer use, when using many CPUs by a parallel computer. Can performing all by user parallel
(flat parallel what is called by MPI etc.) acquire high efficiency? or Can performing in user parallel
and the optimal automatic parallel combination acquire high efficiency? That is, if the optimized
automatic parallel in a node is used and a user realizes optimal parallel between nodes, it is
necessary to ask the credibility of the myth that the greatest parallelization efficiency should be
acquired currently believed by many people although it is unidentified. In user parallel and an
automatic parallel combination said to be the optimal, the thing that there is no example in which
the greatest parallelization efficiency was acquired is a counterargument to it. These propositions
are considered that a dispute continues in the future, only in user parallel, efficient parallel
computing is realized at this parallel computing. Because FUJITSU has said that it is scheduled to
raise the maximum of a process parallel number to over 1024 CPUs, this is a talk very delightful for
a user.

In order to do the high-efficient computation by scalar-parallel machine which will become the
mainstream in future more and more, it is required much more that it conducts by arranging that it
changes the order of the arrangement in order to raise rate of hit of the cache, that it introduces the
three-dimensional domain decomposition method and the communication method by the
consolidation system transmission and reception. By the introduction of new three-dimensional
MHD code which satisfies such condition, the way seems to open it for the first time in the

possibility of the effective utilization of the large scale scalar-parallel machine. Of course, the
necessity for a high-speed hard transfer function is a thing needless to say. Though the
high-efficient computation of absolute efficiency of 40-70% of the vector-parallel machine realized in
three-dimensional global MHD code which solves interaction between the solar wind and earth's
magnetosphere is impossible, it is also certainly likely to be expectable that it exceeds 20% with a
scalar-parallel machine from the test calculation using this FUJITSU PRIMEPOWER HPC2500, or
calculation efficiency near 20% can be realized. It is just going to expect the excellent technical
capabilities which a Japanese supercomputer maker has, and the further development power very
much.

Acknowledgments
The computer simulation of this paper is made using the supercomputer of Information Technology
Center of Nagoya University, Fujitsu VPP5000/64, and PRIMEPOWER HPC2500, NEC SX6 of
JAXA/ISAS, Earth Simulator (ES) of the Earth Simulator center, and Hitachi SR8000 and
SR11000/j1 of National Institute of Polar Research. Moreover, in the development and the test of
the three-dimensional MHD code of a MPI version, I am thankful to Tomoko Tsuda assistant of
Information Technology Center of Nagoya University and FUJITSU, LTD. who obtained many
advices, and the Masaki Okada of a National Institute of Polar Research who cooperated in
supercomputer use of Hitachi.

References
[1] T. Ogino, A three-dimensional MHD simulation of the interaction of the solar wind with the
 earth's magnetosphere: The generation of field-aligned currents,
 J. Geophys. Res., 91, 6791-6806 (1986).
[2] T. Ogino, R.J. Walker and M. Ashour-Abdalla, A global magnetohydrodynamic simulation of the
 magnetosheath and magnetopause when the interplanetary magnetic field is northward,
 IEEE Transactions on Plasma Science, Vol.20, No.6, 817-828 (1992).
[3] T. Ogino, Two-Dimensional MHD Code, (in Computer Space Plasma Physics), Ed. by H.
 Matsumoto and Y. Omura, Terra ScientifiCPUblishing Company,
 161-215, 411-467 (1993).
[4] T. Ogino, R.J. Walker and M. Ashour-Abdalla, A global magnetohydrodynamic simulation of the
 response of the magnetosphere to a northward turning of the interplanetary magnetic field,
 J. Geophys. Res., Vol.99, No.A6, 11,027-11,042 (1994).
[5] T. Ogino, The electromagnetism hydrodynamic simulation of a Solar wind and a
 Magnetosphere interaction,
 Plasma/Nuclear fusion academic journal, Specially plans CD-ROM (description
 dissertation), Vol.75, No.5, CD-ROM 20-30, 1999.
 http://gedas.stelab.nagoya-u.ac.jp/simulation/mhd3d01/mhd3d.html
[6] T. Ogino, The computer simulation of a Solar wind Magnetosphere interaction

 Nagoya University mainframe center news, Vol.28, No.4, 280-291, 1997.
[7] T. Ogino, “Computer simulation and visualization”
 Ehime University synthesis information processing center public relations, Vol.6, 4-15,
 1999.
 http://gedas.stelab.nagoya-u.ac.jp/simulation/simua/ehime985.html
[8] T. Ogino, Global MHD Simulation Code for the Earth's Magnetosphere Using HPF/JA,
 Special Issues of Concurrency: Practice and Experience, 14, 631-646, 2002.
 http://gedas.stelab.nagoya-u.ac.jp/simulation/hpfja/mhd00.html
[9] T. Ogino, The parallel three-dimensional MHD code and three-dimensional visualization
 A heavenly body and the simulation summer seminar lecture text of space plasma, 107-136、
 2003．
 http://center.stelab.nagoya-u.ac.jp/kaken/mpi/mpi-j.html
[10] Tomoko Tsuda, Parallelization by MPI, Information Technology Center of Nagoya University
 MPI school data, February, 2002
[11] Tooru Nagai, Tomoko Tsuda, About the outline and the usage of a new supercomputer system
 Nagoya University mainframe center news, Vol.4, No.1, 6-14、2005．
[12] Masaki Aoki, From a vector (VPP5000) to Scala SMP (PRIMEPOWER HPC2500)
 Nagoya University mainframe center news, Vol.4, No.1, 20-27、2005．
[13] Tomoko Tsuda, The bookmark of new supercomputer (HPC2500) use
 Nagoya University mainframe center news, Vol.4, No.2, 104-113、2005．
[14] FUJITSU, LTD., MPI programming -Fortran, C- The 1.3rd edition, April, 2001,
 The 1.4th edition, December, 2002.
[15] FUJITSU, LTD., MPI use guidance document For V20, UXP/V First edition, September, 1999
[16] Yukiya Aoyama (IBM Japan Corp.), Parallel programming key, The MPI version, Key series 2
 January, 2001
[17] The homepage of refer to the three-dimensional MHD code of 1, 2, and 3 domain decomposition
 used in this paper
 Homepage of New Domain Decomposition 3D MPI MHD Programs,
 http://center.stelab.nagoya-u.ac.jp/kaken/mpi/mpiex012.html

