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In recent years, the supercomputer which can be used for large-scale numerical computation is 
changing from the vector-parallel machine quickly to the scalar-parallel machine. Hitachi and 
FUJITSU shift to marketing of a cluster type scalar-parallel machine even in Japan, and only 
NEC is continuing development of the vector-parallel machine. Under such a situation, although 
development of the program which works by a scalar-parallel machine efficiently serves as urgent 
necessity, development of the efficient parallel computing program is a pending problem for ten 
years these days, and is in the situation which cannot be referred to as having still succeeded also in 
the USA and Europe. Since we found out one effective method of carrying out high-speed 
computation with the scalar-parallel machine, and we present the main point of the method and the 
result of the test calculation by the present carried out with the supercomputer containing 
scalar-parallel machines, such as FUJITSU PRIMEPOWER HPC2500. 
 
1. Introduction 
The environment involving the supercomputer which performs computer simulation is changing 
quickly. It is the shift to a scalar-parallel machine from a vector-parallel machine. In the USA and 
Europe, it shifted to the scalar-parallel machine from about ten years before, and since it was 
considered that a vector-parallel machine was a high cost overrun, it disappeared from the market 
temporarily. However, the Earth Simulator of Japan which is a vector-parallel machine received the 
honor of the supercomputer of a world maximum high speed in 2003 to 2004, and the tendency of 
reappraisal of a vector-parallel machine happened. Then CRAY company started the development 
production of the vector-parallel machine (CRAY X1E) again gaining assistance of the U.S. 
Government. In Japan, first, Hitachi shifted to the scalar-parallel machine (Hitachi SR8000, 
SR11000, called a pseudo-vector machine) from the vector-parallel machine, and FUJITSU also 
followed it (PRIMEPOWER HPC2500). Only NEC was continuing development of a vector-parallel 
machine in the 2004 fiscal year (NEC SX6, SX7and SX8).  
 
The shift to a scalar-parallel machine from a vector-parallel machine took place rapidly because 
many people believed that cost performance must be good. Then, did the scalar-parallel machine 
have good cost performance more really than a vector-parallel machine? Although this was the 
greatest point in question for the user, before the practical use program which actually needs 
high-speed calculation of the supercomputer proved, it was actual that the shift to a scalar-parallel 
machine advanced quickly. Although the absolute efficiency of about 40% had come out with the 
vector-parallel machine by the program execution of large-scale calculation, in spite of having made 
efforts in the world for ten years over, it has been said with the scalar-parallel machine that only 
the absolute efficiency of 3-7% can reach. Isn't the wall of this low absolute efficiency exceeded? As a 



result of variously examining the method for calculating by the scalar-parallel machine at high 
speed, we found one effective solution with the possibility. Scalar-parallel type supercomputer 
Fujitsu PRIMEPOWER HPC2500 was renewed in the Information Technology Center of Nagoya 
University in 2005, while the test result by the method and present state is shown, prediction and 
expectation and an initial test calculation result for PRIMEPOWER HPC2500 and other 
supercomputers are described. 
 
2. MHD Simulation Code. 
We have carried out global computer simulation of interaction between the solar wind and the 
earth's magnetosphere using the three-dimensional MHD (magnetohydrodynamic) simulation 
code([1]-[7]). We have carried out global computer simulation of interaction between the solar 
wind and the earth's magnetosphere using the three-dimensional MHD simulation code. On the 
case in which IMF (interplanetary magnetic field) are south direction and north direction, the 
example of magnetic field structure of the earth's magnetosphere is shown in Figure 1 as the axis of 
intrinsic dipole magnetic field is tilted (The northern hemisphere is summer at the inclination angle 
of 30 degrees,). In addition, it is the case in which IMF rotates in the plane north and south morning 
and evening, and the example of the three-dimensional visualization ([5],[7], [9]) by VRML 
(Virtual Reality Modeling Language) in the ejection of the plasmoid to the tail direction is shown in 
Figure 2, after the IMF changes in south direction from the north direction. In such global model, 
the outside boundary is put if possible in the distance in order to reduce the boundary effect, and 
again, the improvement on the numerical method is carried out in order to raise spatial resolution, 
and it is also indispensable to carry out the efficient utilization of the world largest supercomputer. 
In the MHD model, MHD equation and Maxwell equation are solved using the Modified Leap-Frog 
method as an initial and boundary value problem[8],[9]. 
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Figure 2. Generating of the tail magnetic 
reconnection and the global magnetospheric 
structure in the ejection of the plasmoid to 
the tail direction after IMF changes in south 
direction from the north direction. 

Figure 1.  When Interplanetary Magnetic 
Field (IMF) is for south and for north, the 
magnetic field structure of  the earth's 
magnetosphere is demonstrated. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
The structure of the parallelization Fortran MHD code using MPI (Massage Passing Interface) 
([10]-[16]) which makes possible parallel computing required for a large scale simulation is shown 
in Figure 3 ([8], [9]). The Modified Leap-Frog method becomes the 2 step calculation as well as the 
Two step Lax-Wendroff method. Features of parallel computing in the MHD code using MPI are to 
arrange the necessary communication by parallel computing of the distributed memory in just 
before of the calculation of each time step. The method for effectively utilizing this consolidation 
communication is a very important point for making the efficient parallel computing program. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
３．Parallel Computation by the Domain Decomposition Method 
In parallel computation using the parallel computer of the distributed memory type, it is usual to 
use domain decomposition method for the three-dimensional arrangement ([8],[9]). In case of the 
three-dimensional model, it is possible to choose the dimension of the domain decomposition at one 
dimension, two dimensions and three dimensions. The computation time and the communication 
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Figure 3. The fundamental structure of the 
three dimensional MHD code using MPI. 



time in the cases can be generally estimated as following. 
                                    Computation time  Communication time 

One-dimensional domain decomposition     Ts=k1 N3 /P        Tc=k2 N2 (P-1) 
Two-dimensional domain decomposition  Ts=k1 N3 /P        Tc=2k2 N2 (P1/2 -1) 
Three-dimensional domain decomposition  Ts=k1 N3 /P        Tc=3k2 N2 (P1/3 -1) 

 
Here, k1 and k2 are fixed constant coefficients, and N is variable quantity of the 1 direction in the 
three-dimensional arrangement, and P is a number of parallel CPUs. The sum total of computation 
time and communication time is needed for parallel computing. Parallel computation efficiency by 
the domain decomposition is shown in Figure 4. The computation time, Ts is in inverse proportion 
for number of CPU, P, and it shortens. Communication time, Tc is lengthened with the increase in P. 
However, the aspect in which the communication time is lengthened is greatly different by 1, 2, 
3-dimensional domain decompositions. That is to say, the following can be understood: That the 
three-dimensional domain decomposition can shorten the communication time most and that the 
difference is large even in one dimension and two-dimensional domain decomposition. However, in 
this comparison, it is assumed that coefficient k2 which decides the communication time is same, 
and the condition can be also realized by the contrivance of the program of the communication part. 
In this way, it can be anticipated that the three-dimensional domain decomposition will be the most 
efficient in the scalar-parallel machine, and the two-dimensional domain decomposition will be the 
most efficient in the vector-parallel machine with large number of CPUs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next the gist of the concrete introduction method of the three-dimensional domain decomposition 
will be shown in the three-dimensional global MHD code. In the case of the example of the following 
which performs domain decomposition in three-dimensional space (x, y, z) using MPI ([10], [14], 
[15]), it becomes respectively the x, y, z direction in bisection (npex=2, npey=2, npez=2) in the 
whole with the npe=npex*npey*npez=8 decomposition, and 8 CPU's are used. Arrangement 
variable which enters each CPU is divided, the arrangement of f (nb,0:nxx+1,0:nyy+1,0:nzz+1) is 
assigned, and nb=8 is a number of the component of MHD equation. That is to say, data of 1 plane 

Figure 4. Parallel computing efficiency by 1, 2, 3-dimensional 
domain dividing method. Parallel computing time is the sum of 
computation time (Ts) and communication time (Tc). 
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in both sides is applied on the arrangement variable in the three-dimensional direction which exists 
for CPU of the neighbour originally divided into regions each. itable(-1 : npex,-1 : npey,-1 : npez) is 
reference table for the data transfer between CPU's with wild card. Moreover, ftemp1x, ftemp2x, etc. 
are the buffer arrangement of the two-dimensional boundary surface prepared for consolidation 
data transfer. Like this, the data transfer between the distributed memories which occur for 
three-dimensional domain decomposition can be simply and efficiently executed by preparing 
reference table and buffer arrangement.   
 
<<The method of the three-dimensional domain decomposition.>> 
CC MPI START 

       parameter (npex=2,npey=2,npez=2) 

       parameter (npe=npex*npey*npez,npexy=npex*npey) 

       integer itable(-1:npex,-1:npey,-1:npez) 

c 

       parameter(nzz=(nz2-1)/npez+1) 

       parameter(nyy=(ny2-1)/npey+1) 

       parameter(nxx=(nx2-1)/npex+1) 

       parameter(nxx3=nxx+2,nyy3=nyy+2,nzz3=nzz+2) 

c 

       dimension f(nb,0:nxx+1,0:nyy+1,0:nzz+1) 

       dimension ftemp1x(nb,nyy3,nzz3),ftemp2x(nb,nyy3,nzz3) 

       dimension ftemp1y(nb,nxx3,nzz3),ftemp2y(nb,nxx3,nzz3) 

       dimension ftemp1z(nb,nxx3,nyy3),ftemp2z(nb,nxx3,nyy3) 

c 

 
The program of the data transfer between distributed memories is very much simplified, as it will 
be shown next. To begin with, by using wild card in conversion table, itable, there is no peculiarity 
in the edge of the x, y, z direction in the program. There is no necessity of using conditional 
sentences such as  if sentence. Next, by preserving the data of yz plane in the left end of the x 
direction of f (nb,0:nxx+1,0:nyy+1,0:nzz+1) at buffer arrangement ftemp1x at ftemp1x=f (:,is,:,:) 
temporarily, it is lumped together and is transferred from ftemp1x of CPU of ileftx to ftemp2x of 
CPU of irightx at mpi_sendrecv. By moving in the data of yz plane added to right end of the x 
direction of f (nb,0:nxx+1,0:nyy+1,0:nzz+1) using f (:,ie+1,:,:)=ftemp2x in continueing, the data 
transfer is completed.  By doing like this, it is possible that the data of both sides in each direction 
divided three-dimensional and into regions is easily transferred the consolidation between CPU's 
with the distributed memory. In this method, conditional sentences such as if and do loop are 
completely unnecessary, as it is clear by the program. From the fact, it can be guessed that the 
overhead by the three-dimensional domain decomposition which becomes a problem in the 
comparison with one-dimensional domain decomposition will not occur almost. As a result, it is 
possible to equalize proportion coefficient of communication time, Tc in 1, 2 and 3-dimensional 
domain decomposition almost, as it is shown in Figure 4. 
 
 



<<The data transfer between divided CPU's>> 

CC MPI START 

       irightx = itable(irankx+1,iranky,irankz) 

       ileftx  = itable(irankx-1,iranky,irankz) 

       irighty = itable(irankx,iranky+1,irankz) 

       ilefty  = itable(irankx,iranky-1,irankz) 

       irightz = itable(irankx,iranky,irankz+1) 

       ileftz  = itable(irankx,iranky,irankz-1) 

c 

       ftemp1x=f(:,is,:,:) 

       ftemp1y=f(:,:,js,:) 

       ftemp1z=f(:,:,:,ks) 

       call mpi_sendrecv(ftemp1x,nwyz,mpi_real,ileftx,200, 

     &                   ftemp2x,nwyz,mpi_real,irightx,200, 

     &                   mpi_comm_world,istatus,ier) 

       call mpi_sendrecv(ftemp1y,nwzx,mpi_real,ilefty,210, 

     &                   ftemp2y,nwzx,mpi_real,irighty,210, 

     &                   mpi_comm_world,istatus,ier) 

       call mpi_sendrecv(ftemp1z,nwxy,mpi_real,ileftz,220, 

     &                   ftemp2z,nwxy,mpi_real,irightz,220, 

     &                   mpi_comm_world,istatus,ier) 

c 

       f(:,ie+1,:,:)=ftemp2x 

       f(:,:,je+1,:)=ftemp2y 

       f(:,:,:,ke+1)=ftemp2z 

CC MPI END 

 

The actual three-dimensional MHD code of 1, 2 and 3-dimensional domain decomposition can be 
seen by the homepage shown later ([9], [17]). 
 
４．Comparison of Computation Efficiency of MHD Code Using Domain Decomposition Method 
The shell when compiling and carrying out the three-dimensional MHD code written using MPI by 
scalar-parallel-processing supercomputer FUJITSU PRIMEPOWER HPC2500 of the Information 
Technology Center is indicated to be (A) to (B) ([10], [11], [13]). (A) is use of only process parallel of 
128 CPU, and (B) is a case where 32 process parallel and 4 thread parallel (automatic parallel) ([12], 
[13]) are used together using 128 CPU. Moreover, although the option of compile shows the thing 
when the greatest calculation efficiency is acquired, especially now, it is not necessary to specify 
these options. Although it was not used this time, the comment that it is also effective in 
improvement in the speed by thread parallel adding a compile option (it turning off by a default) 
called -Khardbarrier which enables the barrier function between threads is gotten from FUJITSU. 
 
(A) Compile and execution of MPI Fortran program 
    use 128 processors 
    128 process parallel 
 
mpifrt -Lt progmpi.f -o progmpi -Kfast_GP2=3,V9,largepage=2 -Z mpilist 
qsub mpiex_0128th01.sh 



 
hpc% more mpiex_0128th01.sh 
#  @$-q p128 -lP 128 -eo -o progmpi128.out 
#  @$-lM 8.0gb -lT 600:00:00 
setenv  VPP_MBX_SIZE  1128000000 
cd ./mearthd4/ 
mpiexec -n 128 -mode limited ./progmpi128 
 
(B) Compile and execution of MPI Fortran program 
    use 128 processors 
    32 process parallel 
     4 thread parallel (sheared memory) 
 
mpifrt -Lt progmpi.f -o progmpi -Kfast_GP2=3,V9,largepage=2 -Kparallel -Z mpilist 
qsub mpiex_0128th04.sh 
 
mpiex_0128th04.sh 
#  @$-q p128 -lp 4 -lP 32 -eo -o progmpi01.out 
#  @$-lM 8.0gb -lT 600:00:00 
setenv  VPP_MBX_SIZE  1128000000 
cd ./mearthd4/ 
mpiexec -n 32 -mode limited ./progmpi 

 
First, using FUJITSU PRIMEPOWER HPS2500, the result of having compared the calculation 
efficiency of the three-dimensional MHD code (the one-dimensional domain decomposition 
technique) the case of only process parallel and at the time of using process parallel and thread 
parallel together is shown in Table 1. The table showed the computation time which 1 time of a time 
step advance takes, calculation speed (GFLOPS), and the calculation speed (GFLOPS/CPU) per 1 
CPU to the total number of CPUs, process parallel number, and thread parallel number which were 
used. It is necessary to set a process parallel number over to two, because it is a FORTRAN 
program of MPI. Moreover, a thread parallel number will also be automatically chosen or less as 64 
from the restrictions. In the case of 128 CPU, the case of only process parallel has the best 
calculation efficiency, but also in the case of combined use of process parallel and thread parallel, so 
much equal calculation efficiency has come out. However, if a thread parallel number becomes large 
like 32 and 64, the tendency for calculation efficiency to deteriorate will be seen.  
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. Calculation efficiency of the MHD code using thread parallel by PRIMEPOWER HPC2500 
Toal number   Process     Thread    Computation Calculation Calculation 

of CPUs     parallel      parallel    time        speed        speed/CPU 

              number        number 

                                         (sec)      (GFLOPS)    (GFLOPS/CPU) 

1-dimensional decomposition by f(nx2,ny2,nz2,nb)=f(522,262,262) 
    4             4              -        12.572       5.98       1.494 
    8             8              -         6.931      10.84       1.355 
   16            16              -         3.283      22.88       1.430 
   32            32              -         1.977      38.00       1.187 
   64            64              -         1.108      67.81       1.060 
  128           128              -         0.626     120.17       0.939 
  128            64              2         0.692     108.77       0.850 
  128            32              4         0.697     107.80       0.842 
  128            16              8         0.637     118.07       0.922 
  128             8             16         0.662     113.57       0.887 
  128             4             32         0.752     100.07       0.782 
  128             2             64         0.978      76.95       0.601 
  256           128              2         0.496     151.45       0.592 
  256            64              4         0.439     171.23       0.669 
  256            32              8         0.429     174.94       0.683 
  256            16             16         0.460     163.43       0.638 
  256             8             32         0.577     130.45       0.510 
  512           128              4         0.424     177.63       0.347 
  512            64              8         1.452      51.80       0.101 
  512            32             16         0.297     253.64       0.495 
  512            16             32         0.316     238.37       0.466 
3-dimensional decomposition by f((nb,nx2,ny2,nz2)=f(8,522,262,262) 
  512           512              1         0.0747   1007.78       1.968 
  512           256              2         0.0947    794.75       1.552 
  512           128              4         0.486     154.84       0.302 
  512            64              8         0.628     119.77       0.234 
3-dimensional decomposition by f((nb,nx2,ny2,nz2)=f(8,1024,1024,1024) 
  512           512              1         2.487     916.94       1.791 
 1024           512              2         1.448    1575.09       1.538 
3-dimensional decomposition by f((nb,nx2,ny2,nz2)=f(8,2046,2046,2046) 
  512           512              1        19.694     929.13       1.815 
 1024           512              2        10.763    1700.12       1.660 
 1024           256              4        15.648    1169.36       1.142 
 1536           512              3         7.947    2302.60       1.499 
 1536           256              6        16.462    1111.54       0.724 

 
 
When there is restriction which a big shared memory is required or cannot take large process 
parallel, generally you have to use thread parallel ([12], [13]). For example, in the case of the 
three-dimensional MHD code of one-dimensional domain decomposition of the direction of z of Table 
1, it is necessary to take a process parallel number from restriction of an external boundary 
condition setup below in half of the array variable (nz2=nz+2=262) of the direction of z. Therefore, 
when the number of CPU becomes over 256, thread parallel will be used inevitably. Thus, in 
three-dimensional MHD code, when process parallel and thread parallel need to be used together, if 
a thread parallel number is taken about to 4 to 16, it proves that efficient calculation can be 
performed. Of course, although it seems that whether high efficiency will be acquired if what 
number of threads is used depends to a program strongly, what is necessary is likely to be just to 
start with first of all trying the number of threads which are not out of less than 16. Although Table 
1 shows only the data which the maximum parallel computing speed was obtained, when increasing 
the number of threads, the variation in calculation speed appears considerably. Although this is 



considered to be also balance with data communications, in actual calculation, it is also likely to 
happen that calculation speed becomes slow to a slight degree. Moreover, there is no data in the 
case of 64 threads at 256CPU and 512CPU. This is because it was not able to perform by a work 
domain being insufficient.  
 
In scalar-parallel machine PRIMEPOWER HPC2500, because CPU in a node can be treated as a 
shared memory, it can carry out automatic parallelization of it using functions, such as thread 
parallel. When the three-dimensional MHD code of one-dimensional domain decomposition was 
used, the number of CPU was fixed to 128 from Table 1, and the efficiency of the automatic 
parallelization by thread parallel was shown in the graph of Fig. 5. In this case, between the 
number of CPU, a process parallel number, and a thread parallel number, the relation of "(process 
parallel number) x (thread parallel number) = (the number of CPU)" is required, and a thread 
parallel number is restricted to the number of CPU in a node. Although Figure 5 shows the 
calculation speed (Gflops) at the time of increasing a thread parallel number, and the calculation 
speed (Gflops/CPU) per 1CPU, because the number of CPU is fixed to 128, a difference does not 
appear in both graph. When thread parallel numbers are 8 and 16, calculation efficiency is 
increasing, but it takes for increasing a thread parallel number further like 32 and 64, and 
calculation efficiency deteriorates. Change of the calculation speed (Gflops) at the time of increasing 
the number of CPU by PRIMEPOWER HPC2500 and the calculation speed (Gflops/CPU) per 1CPU 
is shown in Figure 6. Calculation speed here shows a result when the maximum calculation speeds 
also including thread parallel use are obtained to the fixed number of CPU. That the maximum 
calculation speed was obtained was a case where 512CPU did not use thread parallel, but the 
three-dimensional MHD code of three-dimensional domain decomposition was used when it is what 
is called flat MPI use of only process parallel. When the number of CPUs is 1024, a thread parallel 
number is 2, the number of CPUs is 1536, a thread parallel number is a case of 3, and a process 
parallel number was set to a maximum of 512, it was the fastest. When the three-dimensional MHD 
code of three-dimensional domain decomposition is used, it proves that scalability is extended quite 
well to 1536CPU. 
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Figure 5.  Calculation speed (Gflops) and calculation speed per 1CPU (Gflops/CPU) at the time of 
fixing the number of CPUs to 128 by PRIMEPOWER HPC2500, and increasing a thread parallel 
number. 
 

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000
0

500

1000

1500

2000

2500

0 500 1000 1500 2000
0

500

1000

1500

2000

2500

0 500 1000 1500 2000

C
o
m
pu
ta
ti
o
n
 S
pe
e
d 
(G
fl
o
ps
)

C
o
m
pu
ta
ti
o
n
 S
pe
e
d 
pe
r 
P
ro
c
e
ss
o
r

No. of Processors No. of Processors  

Figure 6.  Calculation speed (Gflops) and calculation speed per 1CPU (Gflops/CPU) at the time of 
increasing the number of CPUs by PRIMEPOWER HPC2500.  
 
Interesting data was obtained  in the case that the size of an array is f (8,522,262,262) in 
three-dimensional MHD code of three-dimensional domain decomposition, when it fixed to 512CPU 
and process parallel and a thread parallel number were changed. Only in 512 process parallel, the 
maximum calculation speed obtained 1007GFLOPS. On the other hand, when the thread parallel 
number was increased, calculation speed fell for a while by 2 thread parallel, and calculation speed 
fell still more greatly by 4 and 8 thread parallel. Especially the difference of the calculation speed in 
the case of being parallel is as important as 64 process parallel 8 threads at 512 process parallel and 
512CPU use. It was used the same four division in the latter also as x, y, and the direction of z. 
Although the latter was also expected that calculation speed almost comparable as the former 
comes out, it was different in practice. It is thought that this result means that the method which is 
going to make the amount of communications the minimum using the three-dimensional domain 
dividing method, and the method of the automatic parallelization in 8 thread parallel do not have 
consistency well. That is, what ordering of the array variable f(nb,nx2,ny2,nz2) in 8 thread parallel 



is made is likely to pose a problem. Moreover, in a big array, the tendency which f(8, 1024, 1024, 
1024) and f (8, 2046, 2046, 2046) also resembled is seen. These are considered also as it has 
suggested that automatic parallel optimization and optimization of user parallel are necessarily 
incompatible. When 4 thread parallel and 6 thread parallel are especially specified by 1024CPU 
and 1536CPU use to the array of f (8, 2046, 2046, 2046), respectively, parallel computing efficiency 
does not increase but is falling rather. The comment that the compile option of -Khardbarrier which 
enables the barrier function between threads to calculation efficiency degradation at the time of 
increasing this thread parallel number will probably be effective is gotten from FUJITSU. However, 
the check has not been carried out yet. 
 
The comparison of computation efficiency of the three-dimensional MHD code in the case which 
used 1, 2 and 3-dimensional domain decomposition method is shown in Table 2. The numerical 
value showed calculation speed (GF/PE) for CPU per 1. VPP5000, NEC SX6, NEC ES (Earth 
Simulator) are vector-parallel machine. PRIMEPOWER HPC2500 and Hitachi SR8000 are the 
clustery scalar-parallel machine. In the three-dimensional domain decomposition method, there are 
2 kinds of codes. Order of the arrangement is x, y, z direction at first and vector component (8 
pieces) at late on f (nx2,ny2,nz2,nb).  f (nb,nx2,ny2,nz2) moves the vector component (8 pieces) to 
the head of the arrangement in order to memorize the variable which is related to the calculation 
near. By the exchange of this sequence, in the scalar-parallel machine, rate of hit of the cache rises, 
and the improvement on the computation efficiency is expected, and in PRIMEPOWER HPC2500, 
the effect has remarkably appeared. In the result of vector-parallel machine NEC ES using 512 
CPU, the two-dimensional domain decomposition which utilized the vectorization in the x direction 
is the most efficient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2.  Comparison of the calculation efficiency in the three-dimensional MHD code 
-------------------------------------------------------------------------------------------- 
Computer Processing Capability by 3D MHD Code for (nx,ny,nz)=(510,254,254) 
-------------------------------------------------------------------------------------------- 
                   CPU  VPP5000 PRIMEPOWER PRIMEPOWER  NEC SX6 NEC ES  Hitachi Hitachi 
                 Number         HPC2500    HPC2500                      SR8000  SR11000/j1 
                        (GF/PE) (1.3GHz)   (2.08GHz)   (GF/PE) (GF/PE) (GF/PE) (GF/PE) 
-------------------------------------------------------------------------------------------- 
1D Domain            2     7.08     -----     -----       6.36     6.66 
Decomposition by     4     7.02     0.031   0.039(1.494)  5.83     6.60            0.182 
f(nx2,ny2,nz2,nb)    8     6.45     0.030   0.037(1.355)  5.51     6.50    0.016 
                    16     6.18     0.028   0.046(1.430)  5.44     6.49 
                    32    (7.49)            0.042(1.187)           6.39 
                    64    (6.90)            0.040(1.060)           6.37 
                   128                      0.039(0.907)          (2.11) 
                   256                      0.016(0.683, 2 thread) 
                   512                      0.003(0.347, 4 thread) 
 
2D Domain            4     7.51     0.199     1.529       6.34     6.63            0.775 
Decomposition by     8     6.88     0.191     1.451       6.28     6.47 
f(nx2,ny2,nz2,nb)   16     6.49     0.200     1.575       6.23     6.45 
                    32                        1.395                6.47 
                    64                        1.421                6.32 
                   128                        1.409                6.27 
                   256                        1.396                6.05 
                   512                        0.868                5.62 
 
f(2048,1024,1024,8)1024 (MPI)                                      7.18(7.36 TF) 
f(1024,1024,1024,8) 512 (HPF/JA)                                   6.47(3.31 TF) 
 
3D Domain            8     7.14     0.207     1.558       6.24     6.38    0.253   0.869 
Decomposition by    16     6.77     0.202     1.593       6.34     6.33 
f(nx2,ny2,nz2,nb)   32                        1.527                6.25 
                    64                        1.534                5.61 
                   128                        1.518                5.57 
                   256                        1.513                5.38 
                   512                        0.923                3.94 
 
3D Domain            8     2.91     1.438     2.038       1.13     4.11    0.268   2.221 
Decomposition by    16     2.63     1.416     2.099       4.53     4.06 
f(nb,nx2,ny2,nz2)   32                        1.820                4.11 
                    64                        1.813                4.17 
                   128                        1.857                4.12 
                   256                        1.831                4.12 
                   512                        1.968                3.70 
 
f(8,1024,1024,1024) 512  (MPI)                1.791(0.917 TF) 
f(8,1024,1024,1024)1024  (MPI, 2 thread)      1.538(1.575 TF) 
f(8,2048,2048,2048) 512  (MPI)                1.815(0.929 TF) 
f(8,2048,2048,2048)1024  (MPI, 2 thread)      1.660(1.700 TF) 
f(8,2048,2048,2048)1024  (MPI, 4 thread)      1.142(1.169 TF) 
f(8,2048,2048,2048)1536  (MPI, 3 thread)      1.499(2.303 TF) 
f(8,2048,2048,2048)1536  (MPI, 6 thread)      0.724(1.112 TF) 
-------------------------------------------------------------------------------------------- 

 
 
In order for a scalar-parallel machine to realize high efficiency, it has been proposed that it is 
important to perform to raise rate of hit of the cache and three-dimensional domain decomposition, 
and to reduce the amount of communications. The importance of that can be clearly known by the 
result which is 512 CPU of RIMEPOWER HPC2500 in Table 2. The calculation result of the 2 or 
3-dimensional domain decomposition by PRIMEPOWER HPC2500 uses only process parallel 
altogether to 512CPU. In the one-dimensional domain decomposition, the very bad result has come 
out by HPC2500. This is because grid size (nx,ny,nz)=(510,254,254) which includes a boundary in 



three-dimensional MHD code was taken to the power of 2 (512=510+2,256=254+2). However, if grid 
size was changed into (nx,ny,nz)=(520,260,260), efficiency will have been greatly improved like the 
numerical value shown in a parenthesis. Namely, when the size of the array of the domain 
decomposition direction is taken to the power of 2 and the number of CPU is also taken to the power 
of 2, it is thought that the phenomenon in which competition of memory access arose and 
calculation speed deteriorated extremely occurred ([12], [13]). Therefore, even when high efficiency 
is not acquired first, if making even a small change of changing some numbers of CPU, and sizes of 
an array, it proved that it is calculable at high speed without a big problem for almost all the 
conventional MHD code . 
 
When the number of CPUs is increased, using the three-dimensional MHD code(3Da) of the one(1D), 
two(2D) and three-dimensional domain decomposition using the conventional array f(nx2, ny2, nz2, 
nb) and the three-dimensional MHD code (3Db) of the three-dimensional domain decomposition 
which changed an order of the array and f (nb, nx2, ny2, nz2), scalar-parallel machine 
PRIMEPOWER HPC2500 is shown in Figure 7, and the vector-parallel machine ES (Earth 
Simulator) is shown in Figure 8 for how the tendency of calculation speed change is seen. However, 
the size of an array uses (nx, ny, nz) = (510,254,254) except for one-dimensional domain 
decomposition, and ss Table 2 explained only in one-dimensional domain decomposition, in order to 
avoid extreme degradation from the size of an array including a boundary becoming a the power of 2, 
(nx, ny, nz) = (520,260,260) was used. Because the difference in the size of the array is converted, it 
can measure directly the calculation speed (Gflops) between four kinds of MHD codes, and the 
calculation speed (Gflops/CPU) per 1CPU even in Figure 7. First, in the case of scalar-parallel 
machine PRIMEPOWER HPC2500 of Figure 7, since calculation speed is quick from 1D in 2D, the 
effect which reduced the amount of communications can be seen from having changed to 
two-dimensional domain decomposition from one dimension. However, change of remarkable 
calculation speed is not seen between 2D and 3Da. This is considered that the hit ratio of cash is 
because it is not good similarly. Here, in order to improve the hit ratio of cash, in the 
three-dimensional domain decomposition (3Db) which changed an order of the array, calculation 
speed is greatly improved to 512 CPU, and scalability is seen be very good. Thus, in the 
scalar-parallel machine, it was checked to 512 CPU that very good parallel computing efficiency can 
be acquired by devising an order of an array in order to improve the hit ratio of cash, and using the 
three-dimensional domain dividing method.  
 
On the other hand, in the vector-parallel machine Earth Simulator of Figure 8, two-dimensional 
domain decomposition (2D) keeps the merit of scalability the best to 512CPUs as expected. Because 
this uses do loop inside the maximum for vectorization, since vectorization efficiency becomes good 
in the one where the vector length is longer, and since the amount of communications was 
simultaneously reduced using two-dimensional domain decomposition, it is thought that the 
highest calculation speed was obtained. This is seen more notably than the case where enlarged the 



array and the number of CPUs is increased with 1024 as shown in Table 2. Moreover, the difference 
in the vectorization efficiency which vector length depends is a difference of 3Da and 3Db, that is, 
3Da has brought a result with quick calculation speed rather than 3Db. If the number of CPUs 
becomes large 512, although the calculation speed of 3Da becomes slow and the calculation speed of 
3Db is approached, it thinks because the do loop length inside the maximum became short with 
512/8=64. In Earth Simulator, the difference of 3Da and 3Db is small rather. Furthermore, it seems 
that it should be surprised that the difference of 2D and 3Db is not large, either. Although it 
expected that a difference generally came out more, since the data transfer between CPUs is very 
excellent in Earth Simulator at high speed, three-dimensional domain decomposition (3Da and 3D 
b) can also be understood that parallel computing speed seldom falls. Moreover, although 
calculation speed has deteriorated in one-dimensional domain decomposition of 256CPU use of 
Figure 8, since the variable of the domain decomposition direction is set to nz+2=256 including a 
boundary, and the number of parallelization nodes has the necessity which should be set below to 
the half, it is thought that it is because automatic parallel was used only in that case. The further 
investigation is required for this point. It was checked that very good vector-parallel computing 
efficiency can be acquired from these results by using the two-dimensional domain dividing method 
in a vector-parallel machine. 
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Figure 7.  Calculation speed (Gflops) to four kinds of MHD codes (1D : One-dimensional domain 
decomposition, 2D : Two-dimensional domain decomposition, 3Da：Three-dimensional domain 
decomposition and f(nx2,ny2,nz2,nb), 3Db:Three-dimensional domain decomposition and 
f(nb,nx2,ny2,nz2)) at the time of increasing the number of CPUs by scalar-parallel machine 
PRIMEPOWER HPC2500, and calculation speed per 1CPU (Gflops/CPU) 
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Figure 8.  Calculation speed (Gflops) to four kinds of MHD codes (1D : One-dimensional domain 
decomposition, 2D : Two-dimensional domain decomposition, 3Da：Three-dimensional domain 
decomposition and f(nx2,ny2,nz2,nb), 3Db:Three-dimensional domain decomposition and 
f(nb,nx2,ny2,nz2)) at the time of increasing the number of CPUs by Vector-parallel machine (Earth 
Simulator), and calculation speed per 1CPU (Gflops/CPU) 
 
As a left-behind problem, the period until 128 parallel is possible in a program in one-dimensional 
domain decomposition, when using 256CPU, the combination of 128 process parallel and 2 thread 
parallel needed to be used, when using 512CPU, the combination of 128 process parallel and 4 
thread parallel needed to be used. When the hard transfer function of data is turned OFF (-ldt=0) in 
these cases also in the case of the grid of (nx, ny, nz) = (520,260,260), calculation speed falls 
considerably. Moreover, the result which falls extremely was obtained in 512CPU. However, if the 
data transfer unit was turned ON (- ldt=1), the fall tendency of the calculation efficiency will have 
improved greatly. Moreover, because it is restricted to until a maximum of 512 process parallel in 
PRIMEPOWER HPC2500 of Nagoya University, in 1024CPU use, the combination of 512 process 
parallel and 2 thread parallel is used, and in 1536CPU use, the combination of 512 process parallel 
and 3 thread parallel will be used. However, in the combination of the process parallel and thread 
parallel which uses these many CPU, in the test of hard transfer function OFF (- ldt=0) of data, the 
efficiency of parallelization did not become good but was getting very worse. However, if the 
function was turned ON (- ldt=1), calculation efficiency will have improved remarkably so that the 
result of f (8, 1024, 1024, 1024) and f (8, 2046, 2046, 2046) at the time of using the 
three-dimensional domain dividing method of Tables 1 and 2 may show. Thus, when using the 
hard-data transfer function and using the three-dimensional domain dividing method, it has 
checked that scalability was extended very well to 1536CPU use. We notices one more point, when 
using many CPU, the method of reducing a process parallel number and increasing a thread 
parallel number is causing degradation of calculation efficiency. This tendency has appeared  
notably in the result of f (8,522,262,262) , f (8, 1024, 1024, 1024), and f (8, 2046, 2046, 2046)  at the 
time of using the three-dimensional domain dividing method of Table 1. The result by these present 
is considered also as the method (for example, flat MPI) of using only user parallel compared with 



the method of combining the respectively optimal user parallel and automatic parallel is pointing to 
the view that efficient parallel computing is realizable. The numerical value in the parenthesis of 
VPP5000 shows for comparison what calculation speed of the peak price had come out by 32-64PE 
until now.  
 
Actually, in three-dimensional MHD code which was usually being moved by 16CPU of VPP5000, 
the speed of 110-120 GFLOPS had come out. If the same code is moved by PRIMEPOWER 
HPC2500, 80-90GFLOPS comes out by 64CPU, 90-140GFLOPS has come out by 128 CPU, and 
conventional calculation can be continued as it is. Of course, in three-dimensional MHD code which 
had realized high efficiency by VPP5000, if a CPU number increases further, the tendency for 
calculation speed to be saturated will be seen. If process parallel and thread parallel are used 
together and change of calculation speed is investigated, when using thread parallel together, 6-7% 
calculation speed may improve. It mentioned above when a data transfer unit is not used, the 
tendency restricted when it does not have so much CPU that calculation efficiency improves by 
thread parallel combined use (less than 128-256 CPU) is accepted. However, if the hard transfer 
function of data is turned ON, the maximum of the CPU number will go up considerably. In this way, 
combined use of process parallel and thread parallel can also expect achievement of quite high 
parallel computing efficiency. 
 
５．Outline of Renewal Supercomputer and Anticipation and Survey to High-Speed Calculation 
The outline of the supercomputer of the Information Technology Center of Nagoya University is 
shown below. It was updated in March, 2005 from conventional vector-parallel machine Fujitsu 
VPP5000/64 to scalar-parallel machine Fujitsu PRIMEPOWER HPC2500 ([10], [11]). 
 
 

＜The supercomputer＞ 

 

Fujitsu PRIMEPOWER HPC2500 23 node 

 （64CPU／memory 512GB × 22 node、128CPU／memory512GB × 1 node） 

The total performance ：12.48Tflops 

All memory capacities ：11.5TB 

The disk capacity     ：50TB 

 
By the renewal, how to become high-performance, is shown at catalog performance ratio of  
VPP5000/64 and PRIMEPOWER HPC2500 about supercomputing 4 function of calculation speed, 
the main memory, magnetic-disk capacity, and network speed in Figure 9. By updating to 
scalar-parallel machine PRIMEPOWER HPC2500 from vector-parallel machine VPP5000/64, 
theoretical performance becomes good sharply. However, because there is relative inefficiency of a 
scalar-parallel machine, it is dangerous to expect the improvement in performance easily. It was 
expected as follows whether high-speed calculation would be how far expectable by PRIMEPOWER 
HPC2500 after updating based on the conventional test. Then, test calculation was carried out, and 
the survey result was also added to Table 3.  



 
If the anxiety at the time of updating is written collectively ([8], [9]), especially degradation in MHD 
code of the one-dimensional domain decomposition which had realized high efficiency with the 
vector-parallel machine may be miserable, and calculation efficiency may fall to 1/10 of VPP5000/64. 
If it becomes such a situation, the conventional three-dimensional MHD code will not become useful 
at all. Two and three-dimensional domain decomposition are likely to be adopted well, and 
comparable calculation efficiency expects at last. When the MHD code of the three-dimensional 
domain decomposition which rearranged the array variable is used, 3.4TFLOPS may be able to 
expect by the most optimistic anticipation. However, it is important to actually perform whether 
absolute efficiency becomes how much good in three-dimensional MHD code.  
 
As mentioned above, updating to scalar-parallel machine PRIMEPOWER HPC2500 had much 
source of anxiety. The results which actually carried out the operation start and which were 
energetically tested from March, 2005 are Tables 1 and 2. It is Table 3 which was summarized as 
survey. It became clear that the three-dimensional MHD code which demonstrated high efficiency 
with the vector-parallel machine conventionally almost also has no change, and appropriate 
improvement in the speed is realizable with these results. Actually, even as for the conventional 
three-dimensional MHD code using the one-dimensional domain dividing method, calculation speed 
of 116GF is realized by 128CPU and calculation speed of 175GF is  realized by 256CPU. In this 
way, the large-scale three-dimensional MHD simulation of space plasma was smoothly 
maintainable satisfactorily also about the shift to scalar-parallel machine PRIMEPOWER 
HPC2500 from vector-parallel machine VPP5000 of the Information Technology Center. Moreover, 
in the case of the three-dimensional domain dividing method using the grid of (nx2, ny2, nz2) = 
(2048, 2048, 2048), the following maximum high-speed values were able to be acquired: 929GF by 
512CPU, １７００ＧＦ by 1024CPU, 2303ＧＦ by 1５３６CPU. If the compile option which enables the 
above-mentioned barrier function between threads is used, the further improvement in the speed 
expects. 
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Figure 9. The comparison of PRIMEPOWER HPC2500/1536 and VPP5000/64 (The Information 



Table 3.  How can the high speed computation be expected at PRIMEPOWER HPC2500 ?   

------------------------------------------------------------------------------------------------ 

  VPP5000/64 

The theory performance：9.6 GF x 64  =              614 GF 

     The observation                            410 GF (66.8%) 

 

   PRIMEPOWER HPC2500/1536 

   The theory performance：8.125 GF x 1536  =  12,480 GF 

     Expectation value                 3,400 GF (27.2%) 

                                                            GF/CPU   CPU      computation  

                                                                     number    efficiency speed 

     The three-dimensional domain decomposition   1.416 x (8.125/5.2) x 1536 =    3,400 GF ( 27.2%) 

    The two-dimensional domain decomposition     0.202 x (8.125/5.2) x 1536 =      485 GF (  3.9%) 

    The one-dimensional domain decomposition     0.028 x (8.125/5.2) x 1536 =       67 GF (  0.5%) 

 

   The observation  

                                                            GF/CPU    CPU      computation 

                                                                      number   efficiency speed 

     The three-dimensional domain decomposition             1.831  x   256 =      469 GF ( 22.5%) 
                            1.968  x   512 =     1008 GF ( 24.2%) 
                                                      1.660  x  1024 =     1700 GF ( 20.4%) 

                                                             1.499  x  1536 =     2303 GF ( 18.5%) 

 

    The two-dimensional domain decomposition               1.396  x   256 =      357 GF ( 17.1%) 

    The one-dimensional domain decomposition               0.907  x   128 =      116 GF ( 11.1%) 

 
-------------------------------------------------------------------------------- 

 
６．Summary 
The supercomputer of the Information Technology Center of Nagoya University, which has been 
used at computer application cooperative research of Solar-Terrestrial Environment Laboratory, 
was also renewed from vector-parallel machine Fujitsu VPP5000/64 to scalar-parallel machine 
Fujitsu PRIMEPOWER HPC2500 in March, 2005. The variable (for example, x direction) of the do 
loop of the most internal has been taken as long as possible, because it was important to improve 
the vectorization efficiency first of all in the vector computer. In this way, it has succeeded in 
making simplicity comparatively high-efficient parallel program even in either methods such as 1, 2, 
3-dimensional domain decomposition and MPI and HPF (High Performance Fortran) ([6],[8]). 
However, it is the inadequate to take the variable of the do loop of the most internal in the long 
variable like the space one-direction, because rate of hit of the cache is the most important, in the 
scalar-parallel machine. For example, it is desirable that 8 vector components of MHD equation to 
which be directly concerned in the calculation are taken. In this way, when especially CPU 
increased, it was feared whether many programs which had realized high efficiency with the 
vector-parallel machine would face the problem which cannot raise high efficiency with a 
scalar-parallel machine at all.  However, it has proved clearly that appropriate improvement in 
the speed can be realized without hardly changing the three-dimensional MHD code which 
demonstrated high efficiency with the vector-parallel machine conventionally by PRIMEPOWER 



HPC2500, either.  Ｍoreover, in three-dimensional MHD code (3D Domain Decomposition by f (nb, 
nx2, ny2, nz2)) using improvement in a hit ratio of cash and three-dimensional domain 
decomposition, the maximum high-speed value (they are 929GF at 512CPU) is acquired only by the 
process parallel by MPI, and it has checked that scalability was also very good. However, in order to 
acquire such high efficiency, it is indispensable to use the hard transfer function of data. 
 
In the present system of FUJITSU PRIMEPOWER HPC2500 because the maximum of process 
parallel is 512, when using CPU beyond it, process parallel and thread parallel need to be used 
together ([10]-[13]). Improvement in the speed was unrealizable in the combination of the process 
parallel exceeding 512CPU, and thread parallel with the test result of hard transfer function OFF 
of the early data. However, if it was made hard transfer function ON of data, the parallel computing 
efficiency exceeding the 512CPU will have improved remarkably. In this way, in the 
three-dimensional MHD code using three-dimensional domain decomposition of f (8, 2046, 2046, 
2046) which enlarged the scale of calculation, the maximum high speed of 1.7TFLOPS was able to 
be obtained by combined use of the process parallel (512) using 1024CPU, and thread parallel (2). 
Furthermore, the maximum high speed of 2.3 TFLOPS was able to be obtained by 1536CPU. Thus, 
when using process parallel and thread parallel together well, it proved that remarkable parallel 
computing efficiency is actually acquired. However, when using CPU of such a large number, and 
the number of threads is increased, there is a tendency for parallel computing efficiency to fall 
conversely. This is directly related also to the question of the following most fundamental parallel 
computer use, when using many CPUs by a parallel computer. Can performing all by user parallel 
(flat parallel what is called by MPI etc.) acquire high efficiency? or Can performing in user parallel 
and the optimal automatic parallel combination acquire high efficiency? That is, if the optimized 
automatic parallel in a node is used and a user realizes optimal parallel between nodes, it is 
necessary to ask the credibility of the myth that the greatest parallelization efficiency should be 
acquired currently believed by many people although it is unidentified. In user parallel and an 
automatic parallel combination said to be the optimal, the thing that there is no example in which 
the greatest parallelization efficiency was acquired is a counterargument to it. These propositions 
are considered that a dispute continues in the future, only in user parallel, efficient parallel 
computing is realized at this parallel computing. Because FUJITSU has said that it is scheduled to 
raise the maximum of a process parallel number to over 1024 CPUs, this is a talk very delightful for 
a user. 
 
In order to do the high-efficient computation by scalar-parallel machine which will become the 
mainstream in future more and more, it is required much more that it conducts by arranging that it 
changes the order of the arrangement in order to raise rate of hit of the cache, that it introduces the 
three-dimensional domain decomposition method and the communication method by the 
consolidation system transmission and reception. By the introduction of new three-dimensional 
MHD code which satisfies such condition, the way seems to open it for the first time in the 



possibility of the effective utilization of the large scale scalar-parallel machine. Of course, the 
necessity for a high-speed hard transfer function is a thing needless to say. Though the 
high-efficient computation of absolute efficiency of 40-70% of the vector-parallel machine realized in 
three-dimensional global MHD code which solves interaction between the solar wind and earth's 
magnetosphere is impossible, it is also certainly likely to be expectable that it exceeds 20% with a 
scalar-parallel machine from the test calculation using this FUJITSU PRIMEPOWER HPC2500, or 
calculation efficiency near 20% can be realized. It is just going to expect the excellent technical 
capabilities which a Japanese supercomputer maker has, and the further development power very 
much. 
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