main program : earthb10.f earthb10.f using modified leap-frog scheme 3D MHD simulation of 1/4 earth's magnetosphere Cartesian coordinate finite resistivity 45 degree boundary graphics program to make PostScript files 1. gm150b.f (main) + gsub150.f (subroutine) noon-midnight meridian and equatorial plots (black and white) 2. gm220b.f (main) + gsub220.f (subroutine) energy distribution of cross section 3. gm480b.f (main) + gsub480.f (subroutine) 3-dimensional magnetic field lines 3-dimensional graphics program by VRML files1. zvrmagb.f (main) + zvrsubb.f (subroutine) 3-dimensional magnetic field lines 2. zvrcrob.f (main) + zvrsubb.f (subroutine) cross sectional pattern by pixel image **Summary of parameters in MHD Simulation Code** (nx,ny,nz)=(180,60,60) : grid number without boundary nxp=30 : parameter to determine earth position last=1024 : number of time steps iiq0=8 : a unit of modified leap-frog scheme iip0= 32 : adjust upstream boundary condition iis0= 1024 : sampling step of data thx=4.00 : parameter to adjust time step (xl,yl,zl)=(90.5,30.5,30.5)Re : length in each direction hx=xl/float(nx+1)=0.5Re : grid interval in x direction hy=yl/float(ny+1)=0.5Re : grid interval in y direction hz=zl/float(nz+1)=0.5Re : grid interval in z direction t=0.5*hx*thx : time interval t(real)=t*ts : real time to one time step advance =0.5*0.5*4.00*0.937 : ts is normalization value in time =0.937 sec x=0.5*hx*float(2*i-nx2-1+2*nxp) : x position versus grid number y=0.5*hy*float(2*j-3) : y position versus grid number z=0.5*hz*float(2*k-3) : z position versus grid number where nx2=nx+2, ny2=ny+2 and nz2=nz+2 ro01=5.0E-4 (5/cc) : mass density of solar wind pr01=3.56E-8 : pressure of solar wind vsw=0.044 (300km/s) : speed of solar wind bis=CP(11)=1.5E-4 (5nT) : amplitude of IMF eatt : resistivity rmuu : viscosity eud0 : friction or collision term 1-dimensional array variable f(i1)=f(i,j,k,m) n1=nx+2,n2=n1*(ny+2),n3=n2*(nz+2) nb=8,nbb=11,n4=n3*nb,n5=n3*nbb i1=i+n1*(j-1)+n2*(k-1)+n3*(m-1) m=1 : rho, plasma density m=2 : Vx m=3 : Vy m=4 : Vz m=5 : P, plasma pressure m=6 : Bx m=7 : By m=8 : Bz **execution of main program** 1. f77 -O earthb10.f 2. a.out & where file must be defined in open statement like c open(10,file='earthb10.data', c 1 access='sequential',form='unformatted') open(11,file='earthb11.data', 1 access='sequential',form='unformatted') c or 1. f77 -o earthb10 -O earthb10.f 2. earthb10 & **execution of PostScript graphics program** 1. f77 -c -O gsub150.f 2. f77 -O gm150b.f gsub150.o 3. a.out > gm150a.ps & 4. gs gm150a.ps 5. lp gm150a.ps 1. f77 -c -O gsub220.f 2. f77 -O gm220b.f gsub220.o 3. a.out > gm220a.ps & 1. f77 -c -O gsub480b.f 2. f77 -O gm480b.f gsub480b.o 3. a.out & : output is written in fort.10 **execution of VRML graphics program** 1. f77 -c -O zvrsubb.f 2. f77 -O zvrmagb.f zvrsubb.o 3. a.out & : output is written in fort.10 4. mv fort.10 fort.102 1. f77 -c -O zvrsubb.f 5. f77 -O zvrcrob.f zvrsubb.o 6. a.out & : output is written in fort.10 7. mv fort.10 fort.101 8. cat fort.101 fort.102 > zvrml01.wrl References: T. Ogino, A three-dimensional MHD simulation of the interaction of the solar wind with the earth's magnetosphere: The generation of field-aligned currents, J. Geophys. Res., 91, 6791-6806 (1986). T. Ogino, R.J. Walker and M. Ashour-Abdalla, A global magnetohydrodynamic simulation of the magnetosheath and magnetopause when the interplanetary magnetic field is northward, IEEE Transactions on Plasma Science, Vol.20, No.6, 817-828 (1992). T. Ogino, Two-Dimensional MHD Code, (in Computer Space Plasma Physics), Ed. by H. Matsumoto and Y. Omura, Terra Scientific Publishing Company, 161-215, 411-467 (1993). T. Ogino, R.J. Walker and M. Ashour-Abdalla, A global magnetohydrodynamic simulation of the response of the magnetosphere to a northward turning of the interplanetary magnetic field, J. Geophys. Res., Vol.99, No.A6, 11,027-11,042 (1994).