3-Dimensional MHD Simulation of Earth's Magnetosphere (English)
(Example to execute the MHD Code and Graphic programs)
We will demonstrate how to execute the 3-Dimensional magnetohydrodynamic
(MHD) Simulation of Earth's Magnetosphere in 1/4 volume and how to use the
graphics programs to make PostScript files and VRML files in this section.
In the MHD model, MHD and Maxwell's equations are solved in the solar-magnetospheric
coordinate system by using modified leap-frog method when the upstream solar
wind and interplanetary magnetic field (IMF) boundary conditions are given. Moreover,
north-south symmetry and dawn-dusk symmetry are assumed, therefore it is
enough to solve 1/4 volume as the simulation box.
The main simulation Fortran program, earthb10.f is fully vectorized and
can be executed on many kinds of computers. By executing the main MHD simulation
code, a simulated binary file is produced as output. When the output binary
file is used as input, graphics programs can be executed to make PostScript files
and VRML files for three dimensional visualization.
main program : earthb10.f
earthb10.f using modified leap-frog scheme
3D MHD simulation of 1/4 earth's magnetosphere
Cartesian coordinate finite resistivity 45 degree boundary
graphics program to make PostScript files
1. gm150b.f (main) + gsub150.f (subroutine)
noon-midnight meridian and equatorial plots (black and white)
2. gm220b.f (main) + gsub220.f (subroutine)
energy distribution of cross section
3. gm480b.f (main) + gsub480.f (subroutine)
3-dimensional magnetic field lines
3-dimensional graphics program by VRML files
1. zvrmagb.f (main) + zvrsubb.f (subroutine)
3-dimensional magnetic field lines
2. zvrcrob.f (main) + zvrsubb.f (subroutine)
cross sectional pattern by pixel image
**Summary of parameters in MHD Simulation Code**
(nx,ny,nz)=(180,60,60) : grid number without boundary
nxp=30 : parameter to determine earth position
last=1024 : number of time steps
iiq0=8 : a unit of modified leap-frog scheme
iip0= 32 : adjust upstream boundary condition
iis0= 1024 : sampling step of data
thx=4.00 : parameter to adjust time step
(xl,yl,zl)=(90.5,30.5,30.5)Re : length in each direction
hx=xl/float(nx+1)=0.5Re : grid interval in x direction
hy=yl/float(ny+1)=0.5Re : grid interval in y direction
hz=zl/float(nz+1)=0.5Re : grid interval in z direction
t=0.5*hx*thx : time interval
t(real)=t*ts : real time to one time step advance
=0.5*0.5*4.00*0.937 : ts is normalization value in time
=0.937 sec
x=0.5*hx*float(2*i-nx2-1+2*nxp) : x position versus grid number
y=0.5*hy*float(2*j-3) : y position versus grid number
z=0.5*hz*float(2*k-3) : z position versus grid number
where nx2=nx+2, ny2=ny+2 and nz2=nz+2
ro01=5.0E-4 (5/cc) : mass density of solar wind
pr01=3.56E-8 : pressure of solar wind
vsw=0.044 (300km/s) : speed of solar wind
bis=CP(11)=1.5E-4 (5nT) : amplitude of IMF
eatt : resistivity
rmuu : viscosity
eud0 : friction or collision term
1-dimensional array variable f(i1)=f(i,j,k,m)
n1=nx+2,n2=n1*(ny+2),n3=n2*(nz+2)
nb=8,nbb=11,n4=n3*nb,n5=n3*nbb
i1=i+n1*(j-1)+n2*(k-1)+n3*(m-1)
m=1 : rho, plasma density
m=2 : Vx
m=3 : Vy
m=4 : Vz
m=5 : P, plasma pressure
m=6 : Bx
m=7 : By
m=8 : Bz
**execution of main program**
1. f77 -O earthb10.f
2. a.out &
where file must be defined in open statement like
c open(10,file='earthb10.data',
c 1 access='sequential',form='unformatted')
open(11,file='earthb11.data',
1 access='sequential',form='unformatted')
c
or
1. f77 -o earthb10 -O earthb10.f
2. earthb10 &
**execution of PostScript graphics program**
1. f77 -c -O gsub150.f
2. f77 -O gm150b.f gsub150.o
3. a.out > gm150a.ps &
4. gs gm150a.ps
5. lp gm150a.ps
1. f77 -c -O gsub220.f
2. f77 -O gm220b.f gsub220.o
3. a.out > gm220a.ps &
1. f77 -c -O gsub480b.f
2. f77 -O gm480b.f gsub480b.o
3. a.out & : output is written in fort.10
**execution of VRML graphics program**
1. f77 -c -O zvrsubb.f
2. f77 -O zvrmagb.f zvrsubb.o
3. a.out & : output is written in fort.10
4. mv fort.10 fort.102
1. f77 -c -O zvrsubb.f
5. f77 -O zvrcrob.f zvrsubb.o
6. a.out & : output is written in fort.10
7. mv fort.10 fort.101
8. cat fort.101 fort.102 > zvrml01.wrl
References:
T. Ogino, A three-dimensional MHD simulation of the interaction of the solar
wind with the earth's magnetosphere: The generation of field-aligned
currents, J. Geophys. Res., 91, 6791-6806 (1986).
T. Ogino, R.J. Walker and M. Ashour-Abdalla, A global magnetohydrodynamic
simulation of the magnetosheath and magnetopause when the interplanetary
magnetic field is northward, IEEE Transactions on Plasma Science,
Vol.20, No.6, 817-828 (1992).
T. Ogino, Two-Dimensional MHD Code, (in Computer Space Plasma Physics),
Ed. by H. Matsumoto and Y. Omura, Terra Scientific Publishing Company,
161-215, 411-467 (1993).
T. Ogino, R.J. Walker and M. Ashour-Abdalla, A global magnetohydrodynamic
simulation of the response of the magnetosphere to a northward turning of
the interplanetary magnetic field, J. Geophys. Res., Vol.99, No.A6,
11,027-11,042 (1994).