c program pwave2 c cc pwave2.f main program of 2-dimensional wave equtaion c modified leap-frog method 1991.12.14 parameter(npe=8) !xocl processor pe(npe) parameter(nx=100,ny=100) c parameter(nb=3,iip0=8,iiq0=4,iir0=4,last=4) parameter(nb=3,iip0=8,iiq0=1,iir0=1,last=4) parameter(nx1=nx+1,nx2=nx+2,ny1=ny+1,ny2=ny+2) parameter(n1=nx2,n2=n1*ny2,n3=n2*nb,noinp=30) parameter(thx=0.5,tam=0.5,vis0=0.10) !xocl index partition ind=(pe,index=1:ny2,part=band) !xocl index partition indo=(pe,index=1:ny2,part=band,overlap=(1,1)) c real*8 f(nx2,ny2,nb),u(nx2,ny2,nb) real*8 gf(nx2,ny2,nb),gu(nx2,ny2,nb) real*8 v(nx2,ny2,nb),p(nb) real*8 zt0,zt1,zt2,zt dimension ppin(10) !xocl local f(:,/indo,:),u(:,/indo,:),v(:,/indo,:) !xocl global gf,gu equivalence (gf,f),(gu,u) common /blk/gf c c ppin xl yl dxl dyl dn dv 7 8 9 10 data ppin/101.0,101.0,10.0,10.0,1.0,0.0, 7, 8, 9, 10/ c !xocl parallel region c xl=ppin(1) yl=ppin(2) dxl=ppin(3) dyl=ppin(4) dn=ppin(5) dv=ppin(6) vis=vis0 c hx=xl/float(nx1) hy=yl/float(ny1) t1=thx*hx dx1=0.5*t1/hx dy1=0.5*t1/hy dx2=vis*0.50*(t1/hx)**2 dy2=vis*0.50*(t1/hy)**2 c c initial parameters c write(6,122) nx,ny,last,nx2,ny2 write(6,124) t1,dx1,dy1,dx2,dy2 122 format(1h ,10i8) 124 format(1h ,8(1pe10.2)) c c initial conditions call ainit1(ppin) c c start of calculation call clock(zt0) c do 500 ii=1,last call clock(zt1) do 300 iir=1,iir0 do 200 iiq=1,iiq0 do 100 iip=1,iip0 !xocl overlapfix(f) (id) !xocl movewait (id) c c boundary conditions c do 20 m=1,nb !xocl spread do /ind do 22 j=2,ny1 f(1,j,m)=f(nx1,j,m) f(nx2,j,m)=f(2,j,m) 22 continue !xocl end spread !xocl spread move /indo,: do 24 j=1,1 do 24 i=1,nx2 f(i,j,m)=gf(i,j+ny,m) 24 continue !xocl end spread(id) !xocl movewait(id) !xocl spread move /indo,: do 26 j=ny2,ny2 do 26 i=1,nx2 f(i,j,m)=gf(i,j-ny,m) 26 continue !xocl end spread(id) !xocl movewait(id) 20 continue c !xocl overlapfix(f) (id) !xocl movewait (id) c c case of iip=1 2-step Lax-Wendroff method if(iip.eq.1) then t=0.5*t1 dx=0.5*dx1 dy=0.5*dy1 do 30 m=1,nb !xocl spread do /ind do 32 j=1,ny1 do 32 i=1,nx1 u(i,j,m)=0.25*(f(i,j,m)+f(i+1,j,m)+ 1 f(i,j+1,m)+f(i+1,j+1,m)) 32 continue !xocl end spread 30 continue c else t=t1 dx=dx1 dy=dy1 endif c !xocl overlapfix(f,u) (id) !xocl movewait (id) c c first step c !xocl spread do /ind do 40 j=1,ny1 do 40 i=1,nx1 c p(1)=0.25*(f(i,j,1)+f(i+1,j,1)+ 1 f(i,j+1,1)+f(i+1,j+1,1)) p(2)=0.25*(f(i,j,2)+f(i+1,j,2)+ 1 f(i,j+1,2)+f(i+1,j+1,2)) p(3)=0.25*(f(i,j,3)+f(i+1,j,3)+ 1 f(i,j+1,3)+f(i+1,j+1,3)) c u(i,j,1)=u(i,j,1) 1 -dx*(f(i+1,j+1,2)+f(i+1,j,2)-f(i,j+1,2)-f(i,j,2)) 2 -dy*(f(i+1,j+1,3)-f(i+1,j,3)+f(i,j+1,3)-f(i,j,3)) u(i,j,2)=u(i,j,2) 1 -dx*(f(i+1,j+1,1)+f(i+1,j,1)-f(i,j+1,1)-f(i,j,1)) u(i,j,3)=u(i,j,3) 1 -dy*(f(i+1,j+1,1)-f(i+1,j,1)+f(i,j+1,1)-f(i,j,1)) c 40 continue !xocl end spread c !xocl overlapfix(u) (id) !xocl movewait (id) c c preparation of second step c second step c !xocl spread do /ind do 62 j=1,ny2 c do 62 m=1,nb do 62 i=1,nx2 v(i,j,m)=f(i,j,m) 62 continue !xocl end spread c !xocl overlapfix(v) (id) !xocl movewait (id) c c !xocl spread do /ind do 60 j=2,ny1 do 60 i=2,nx1 c p(1)=0.25*(u(i,j,1)+u(i-1,j,1)+ 1 u(i,j-1,1)+u(i-1,j-1,1)) p(2)=0.25*(u(i,j,2)+u(i-1,j,2)+ 1 u(i,j-1,2)+u(i-1,j-1,2)) p(3)=0.25*(u(i,j,3)+u(i-1,j,3)+ 1 u(i,j-1,3)+u(i-1,j-1,3)) c f(i,j,1)=f(i,j,1) 1 -dx1*(u(i,j,2)+u(i,j-1,2)-u(i-1,j,2)-u(i-1,j-1,2)) 2 -dy1*(u(i,j,3)-u(i,j-1,3)+u(i-1,j,3)-u(i-1,j-1,3)) 3 +dx2*(v(i-1,j,1)-2.0*v(i,j,1)+v(i+1,j,1)) 4 +dy2*(v(i,j+1,1)-2.0*v(i,j,1)+v(i,j-1,1)) f(i,j,2)=f(i,j,2) 1 -dx1*(u(i,j,1)+u(i,j-1,1)-u(i-1,j,1)-u(i-1,j-1,1)) 2 +dx2*(v(i-1,j,2)-2.0*v(i,j,2)+v(i+1,j,2)) 3 +dy2*(v(i,j+1,2)-2.0*v(i,j,2)+v(i,j-1,2)) f(i,j,3)=f(i,j,3) 1 -dy1*(u(i,j,1)-u(i,j-1,1)+u(i-1,j,1)-u(i-1,j-1,1)) 2 +dx2*(v(i-1,j,3)-2.0*v(i,j,3)+v(i+1,j,3)) 3 +dy2*(v(i,j+1,3)-2.0*v(i,j,3)+v(i,j-1,3)) c 60 continue !xocl end spread c c end of 1 time step advance c 100 continue 200 continue 300 continue c call clock(zt2) zt1=zt1-zt0 zt2=zt2-zt0 zt=zt2-zt1 write(6,402) ii,zt0,zt1,zt2,zt 402 format(1h , i6,1pe12.3,3(0pf12.5)) c c write the output data c 500 continue 9 continue !xocl end parallel c stop end subroutine clock(ti) real*8 ti,ti1 ti=1.0d0 ti1=1.0d0 call gettod(ti1) ti=1.0d-6*ti1 c x=0.0 c y=secnds(x) c ti=1.0d0*y return end subroutine ainit1(ppin) parameter(npe=8) !xocl processor pe(npe) !xocl subprocessor pes(npe)=pe(1:npe) parameter(nx=100,ny=100) parameter(nb=3,iip0=8,iiq0=4,iir0=4,last=4) parameter(nx1=nx+1,nx2=nx+2,ny1=ny+1,ny2=ny+2) parameter(n1=nx2,n2=n1*ny2,n3=n2*nb,noinp=30) !xocl index partition ind=(pes,index=1:ny2,part=band) !xocl index partition indo=(pes,index=1:ny2,part=band,overlap=(1,1)) c real*8 f(nx2,ny2,nb) real*8 gf(nx2,ny2,nb) dimension ppin(10) !xocl local f(:,/indo,:) !xocl global gf equivalence (gf,f) common /blk/gf c !xocl overlapfix(f) (id) !xocl movewait (id) c xl=ppin(1) yl=ppin(2) dxl=ppin(3) dyl=ppin(4) dn=ppin(5) dv=ppin(6) c hx=xl/float(nx1) hy=yl/float(ny1) c !xocl spread do /ind do 10 j=1,ny2 do 10 i=1,nx2 y=0.5*hy*(2*j-ny2-1) x=0.5*hx*(2*i-nx2-1) dn1=0.0 dv1=0.0 ax1=sqrt(x*x+y*y) if(ax1.le.dxl) dn1=dn f(i,j,1)=dn1 f(i,j,2)=0.0 f(i,j,3)=0.0 10 continue !xocl end spread c return end