c program pwave3 c cc pwave3.f main program of 3-dimensional wave equtaion c modified leap-frog method 1991.12.14 parameter(npe=2) !xocl processor pe(npe) parameter(nx=100,ny=100,nz=100) parameter(nb=4,iip0=8,iiq0=1,iir0=1,last=4) parameter(nx1=nx+1,nx2=nx+2,ny1=ny+1,ny2=ny+2) parameter(nz1=nz+1,nz2=nz+2) parameter(n1=nx2,n2=n1*ny2,n3=n2*nz2,noinp=30) parameter(n4=n3*nb) parameter(thx=0.5,tam=0.5,vis0=0.10) !xocl index partition ind=(pe,index=1:nz2,part=band) !xocl index partition indo=(pe,index=1:nz2,part=band,overlap=(1,1)) c real*8 f(nx2,ny2,nz2,nb),u(nx2,ny2,nz2,nb) real*8 gf(nx2,ny2,nz2,nb),gu(nx2,ny2,nz2,nb) real*8 v(nx2,ny2,nz2,nb),p(nb) real*8 gv(nx2,ny2,nz2,nb) dimension ppin(10) real*8 zt0,zt1,zt2,zt !xocl local f(:,:,/indo,:),u(:,:,/indo,:),v(:,:,/indo,:) !xocl global gf,gu,gv equivalence (gf,f),(gu,u),(gv,v) common /blk/gf c c ppin xl yl zl dxl dyl dzl dn dv 9 10 data ppin/62.0,62.0,62.0,10.0,10.0,10.0,1.0,0.0, 9, 10/ c !xocl parallel region c xl=ppin(1) yl=ppin(2) zl=ppin(3) dxl=ppin(4) dyl=ppin(5) dzl=ppin(6) dn=ppin(7) dv=ppin(8) vis=vis0 c hx=xl/float(nx1) hy=yl/float(ny1) hz=zl/float(nz1) t1=thx*hx dx1=0.5*t1/hx dy1=0.5*t1/hy dz1=0.5*t1/hz dx2=vis*0.50*(t1/hx)**2 dy2=vis*0.50*(t1/hy)**2 dz2=vis*0.50*(t1/hz)**2 c c initial parameters c write(6,122) nx,ny,nz,last,nx2,ny2,nz2 write(6,124) t1,hx,hy,hz,dx1,dy1,dz1 122 format(1h ,10i8) 124 format(1h ,8(1pe10.3)) c c initial conditions call ainit1(ppin) c c start of calculation call clock(zt0) c do 500 ii=1,last call clock(zt1) do 300 iir=1,iir0 do 200 iiq=1,iiq0 do 100 iip=1,iip0 !xocl overlapfix(f) (id) !xocl movewait (id) c c boundary conditions c do 20 m=1,nb !xocl spread do /ind do 24 k=2,nz1 do 24 j=2,ny1 f(1,j,k,m)=f(nx1,j,k,m) f(nx2,j,k,m)=f(2,j,k,m) 24 continue !xocl end spread !xocl spread do /ind do 22 k=2,nz1 do 22 i=1,nx2 f(i,1,k,m)=f(i,ny1,k,m) f(i,ny2,k,m)=f(i,2,k,m) 22 continue !xocl end spread !xocl spread move /indo,:,: do 26 k=1,1 do 26 j=1,ny2 do 26 i=1,nx2 c f(i,j,1,m)=gf(i,j,nz1,m) c f(i,j,nz2,m)=gf(i,j,2,m) f(i,j,k,m)=gf(i,j,k+nz,m) 26 continue !xocl end spread(id) !xocl movewait(id) !xocl spread move /indo,:,: do 28 k=nz2,nz2 do 28 j=1,ny2 do 28 i=1,nx2 c f(i,j,1,m)=gf(i,j,nz1,m) c f(i,j,nz2,m)=gf(i,j,2,m) f(i,j,k,m)=gf(i,j,k-nz,m) 28 continue !xocl end spread(id) !xocl movewait(id) 20 continue c !xocl overlapfix(f) (id) !xocl movewait (id) c c case of iip=1 2-step Lax-Wendroff method if(iip.eq.1) then t=0.5*t1 dx=0.5*dx1 dy=0.5*dy1 dz=0.5*dz1 !xocl spread do /ind do 32 k=1,nz1 do 32 m=1,nb do 32 j=1,ny1 do 32 i=1,nx1 u(i,j,k,m)=0.125*(f(i,j,k,m)+f(i+1,j,k,m)+ 1 f(i,j+1,k,m)+f(i+1,j+1,k,m)+ 2 f(i,j,k+1,m)+f(i+1,j,k+1,m)+ 3 f(i,j+1,k+1,m)+f(i+1,j+1,k+1,m)) 32 continue !xocl end spread c else t=t1 dx=dx1 dy=dy1 dz=dz1 endif c !xocl overlapfix(f,u) (id) !xocl movewait (id) c c first step c !xocl spread do /ind do 40 k=1,nz1 do 40 j=1,ny1 do 40 i=1,nx1 c p(1)=0.125*(f(i,j,k,1)+f(i+1,j,k,1)+ 1 f(i,j+1,k,1)+f(i+1,j+1,k,1)+ 2 f(i,j,k+1,1)+f(i+1,j,k+1,1)+ 3 f(i,j+1,k+1,1)+f(i+1,j+1,k+1,1)) p(2)=0.125*(f(i,j,k,2)+f(i+1,j,k,2)+ 1 f(i,j+1,k,2)+f(i+1,j+1,k,2)+ 2 f(i,j,k+1,2)+f(i+1,j,k+1,2)+ 3 f(i,j+1,k+1,2)+f(i+1,j+1,k+1,2)) p(3)=0.125*(f(i,j,k,3)+f(i+1,j,k,3)+ 1 f(i,j+1,k,3)+f(i+1,j+1,k,3)+ 2 f(i,j,k+1,3)+f(i+1,j,k+1,3)+ 3 f(i,j+1,k+1,3)+f(i+1,j+1,k+1,3)) p(4)=0.125*(f(i,j,k,4)+f(i+1,j,k,4)+ 1 f(i,j+1,k,4)+f(i+1,j+1,k,4)+ 2 f(i,j,k+1,4)+f(i+1,j,k+1,4)+ 3 f(i,j+1,k+1,4)+f(i+1,j+1,k+1,4)) c u(i,j,k,1)=u(i,j,k,1) 1 -dx*(f(i+1,j+1,k+1,2)+f(i+1,j,k+1,2) 2 -f(i,j+1,k+1,2)-f(i,j,k+1,2) 3 +f(i+1,j+1,k,2)+f(i+1,j,k,2) 4 -f(i,j+1,k,2)-f(i,j,k,2)) 5 -dy*(f(i+1,j+1,k+1,3)-f(i+1,j,k+1,3) 6 +f(i,j+1,k+1,3)-f(i,j,k+1,3) 7 +f(i+1,j+1,k,3)-f(i+1,j,k,3) 8 +f(i,j+1,k,3)-f(i,j,k,3)) 1 -dz*(f(i+1,j+1,k+1,4)+f(i+1,j,k+1,4) 2 +f(i,j+1,k+1,4)+f(i,j,k+1,4) 3 -f(i+1,j+1,k,4)-f(i+1,j,k,4) 4 -f(i,j+1,k,4)-f(i,j,k,4)) u(i,j,k,2)=u(i,j,k,2) 1 -dx*(f(i+1,j+1,k+1,1)+f(i+1,j,k+1,1) 2 -f(i,j+1,k+1,1)-f(i,j,k+1,1) 3 +f(i+1,j+1,k,1)+f(i+1,j,k,1) 4 -f(i,j+1,k,1)-f(i,j,k,1)) u(i,j,k,3)=u(i,j,k,3) 1 -dy*(f(i+1,j+1,k+1,1)-f(i+1,j,k+1,1) 2 +f(i,j+1,k+1,1)-f(i,j,k+1,1) 3 +f(i+1,j+1,k,1)-f(i+1,j,k,1) 4 +f(i,j+1,k,1)-f(i,j,k,1)) u(i,j,k,4)=u(i,j,k,4) 1 -dz*(f(i+1,j+1,k+1,1)+f(i+1,j,k+1,1) 2 +f(i,j+1,k+1,1)+f(i,j,k+1,1) 3 +f(i+1,j+1,k,1)+f(i+1,j,k,1) 4 +f(i,j+1,k,1)+f(i,j,k,1)) c 40 continue !xocl end spread c !xocl overlapfix(u) (id) !xocl movewait (id) c c preparation of second step c second step c !xocl spread do /ind do 62 k=1,nz2 do 62 m=1,nb do 62 j=1,ny2 do 62 i=1,nx2 v(i,j,k,m)=f(i,j,k,m) 62 continue !xocl end spread c !xocl overlapfix(v) (id) !xocl movewait (id) c !xocl spread do /ind do 60 k=2,nz1 do 60 j=2,ny1 do 60 i=2,nx1 c p(1)=0.125*(u(i,j,k,1)+u(i-1,j,k,1)+ 1 u(i,j-1,k,1)+u(i-1,j-1,k,1)+ 2 u(i,j,k-1,1)+u(i-1,j,k-1,1)+ 3 u(i,j-1,k-1,1)+u(i-1,j-1,k-1,1)) p(2)=0.125*(u(i,j,k,2)+u(i-1,j,k,2)+ 1 u(i,j-1,k,2)+u(i-1,j-1,k,2)+ 2 u(i,j,k-1,2)+u(i-1,j,k-1,2)+ 3 u(i,j-1,k-1,2)+u(i-1,j-1,k-1,2)) p(3)=0.125*(u(i,j,k,3)+u(i-1,j,k,3)+ 1 u(i,j-1,k,3)+u(i-1,j-1,k,3)+ 2 u(i,j,k-1,3)+u(i-1,j,k-1,3)+ 3 u(i,j-1,k-1,3)+u(i-1,j-1,k-1,3)) p(4)=0.125*(u(i,j,k,4)+u(i-1,j,k,4)+ 1 u(i,j-1,k,4)+u(i-1,j-1,k,4)+ 2 u(i,j,k-1,4)+u(i-1,j,k-1,4)+ 3 u(i,j-1,k-1,4)+u(i-1,j-1,k-1,4)) c f(i,j,k,1)=f(i,j,k,1) 1 -dx1*(u(i,j,k,2)+u(i,j-1,k,2) 2 -u(i-1,j,k,2)-u(i-1,j-1,k,2) 3 +u(i,j,k-1,2)+u(i,j-1,k-1,2) 4 -u(i-1,j,k-1,2)-u(i-1,j-1,k-1,2)) 5 -dy1*(u(i,j,k,3)-u(i,j-1,k,3) 6 +u(i-1,j,k,3)-u(i-1,j-1,k,3) 7 +u(i,j,k-1,3)-u(i,j-1,k-1,3) 8 +u(i-1,j,k-1,3)-u(i-1,j-1,k-1,3)) 1 -dz1*(u(i,j,k,4)+u(i,j-1,k,4) 2 +u(i-1,j,k,4)+u(i-1,j-1,k,4) 3 -u(i,j,k-1,4)-u(i,j-1,k-1,4) 4 -u(i-1,j,k-1,4)-u(i-1,j-1,k-1,4)) 5 +dx2*(v(i-1,j,k,1)-2.0*v(i,j,k,1)+v(i+1,j,k,1)) 6 +dy2*(v(i,j+1,k,1)-2.0*v(i,j,k,1)+v(i,j-1,k,1)) 7 +dz2*(v(i,j,k+1,1)-2.0*v(i,j,k,1)+v(i,j,k-1,1)) f(i,j,k,2)=f(i,j,k,2) 1 -dx1*(u(i,j,k,1)+u(i,j-1,k,1) 2 -u(i-1,j,k,1)-u(i-1,j-1,k,1) 3 +u(i,j,k-1,1)+u(i,j-1,k-1,1) 4 -u(i-1,j,k-1,1)-u(i-1,j-1,k-1,1)) 5 +dx2*(v(i-1,j,k,2)-2.0*v(i,j,k,2)+v(i+1,j,k,2)) 6 +dy2*(v(i,j+1,k,2)-2.0*v(i,j,k,2)+v(i,j-1,k,2)) 7 +dz2*(v(i,j,k+1,2)-2.0*v(i,j,k,2)+v(i,j,k-1,2)) f(i,j,k,3)=f(i,j,k,3) 1 -dy1*(u(i,j,k,1)-u(i,j-1,k,1) 2 +u(i-1,j,k,1)-u(i-1,j-1,k,1) 3 +u(i,j,k-1,1)-u(i,j-1,k-1,1) 4 +u(i-1,j,k-1,1)-u(i-1,j-1,k-1,1)) 5 +dx2*(v(i-1,j,k,3)-2.0*v(i,j,k,3)+v(i+1,j,k,3)) 6 +dy2*(v(i,j+1,k,3)-2.0*v(i,j,k,3)+v(i,j-1,k,3)) 7 +dz2*(v(i,j,k+1,3)-2.0*v(i,j,k,3)+v(i,j,k-1,3)) f(i,j,k,4)=f(i,j,k,4) 1 -dz1*(u(i,j,k,1)+u(i,j-1,k,1) 2 +u(i-1,j,k,1)+u(i-1,j-1,k,1) 3 -u(i,j,k-1,1)-u(i,j-1,k-1,1) 4 -u(i-1,j,k-1,1)-u(i-1,j-1,k-1,1)) 5 +dx2*(v(i-1,j,k,4)-2.0*v(i,j,k,4)+v(i+1,j,k,4)) 6 +dy2*(v(i,j+1,k,4)-2.0*v(i,j,k,4)+v(i,j-1,k,4)) 7 +dz2*(v(i,j,k+1,4)-2.0*v(i,j,k,4)+v(i,j,k-1,4)) c 60 continue !xocl end spread c c end of 1 time step advance c 100 continue 200 continue 300 continue c call clock(zt2) zt1=zt1-zt0 zt2=zt2-zt0 zt=zt2-zt1 write(6,402) ii,zt0,zt1,zt2,zt 402 format(1h , i6,1pe12.3,3(0pf12.5)) c c write the output data c 500 continue 9 continue !xocl end parallel c stop end subroutine clock(ti) real*8 ti,ti1 ti=1.0d0 ti1=1.0d0 call gettod(ti1) ti=1.0d-6*ti1 c x=0.0 c y=secnds(x) c ti=1.0d0*y return end subroutine ainit1(ppin) parameter(npe=2) !xocl processor pe(npe) !xocl subprocessor pes(npe)=pe(1:npe) parameter(nx=100,ny=100,nz=100) parameter(nb=4,iip0=8,iiq0=1,iir0=1,last=4) parameter(nx1=nx+1,nx2=nx+2,ny1=ny+1,ny2=ny+2) parameter(nz1=nz+1,nz2=nz+2) parameter(n1=nx2,n2=n1*ny2,n3=n2*nz2,noinp=30) parameter(n4=n3*nb) !xocl index partition ind=(pes,index=1:nz2,part=band) !xocl index partition indo=(pes,index=1:nz2,part=band,overlap=(1,1)) c real*8 f(nx2,ny2,nz2,nb) real*8 gf(nx2,ny2,nz2,nb) dimension ppin(10) !xocl local f(:,:,/indo,:) !xocl global gf equivalence (gf,f) common /blk/gf c !xocl overlapfix(f) (id) !xocl movewait (id) c xl=ppin(1) yl=ppin(2) zl=ppin(3) dxl=ppin(4) dyl=ppin(5) dzl=ppin(6) dn=ppin(7) dv=ppin(8) hx=xl/float(nx1) hy=yl/float(ny1) hz=zl/float(nz1) c !xocl spread do /ind do 10 k=1,nz2 z=0.5*hz*(2*k-nz2-1) do 10 j=1,ny2 y=0.5*hy*(2*j-ny2-1) do 10 i=1,nx2 x=0.5*hx*(2*i-nx2-1) dn1=0.0 dv1=0.0 ax1=sqrt(x*x+y*y+z*z) if(ax1.le.dxl) dn1=dn f(i,j,k,1)=dn1 f(i,j,k,2)=0.0 f(i,j,k,3)=0.0 f(i,j,k,4)=0.0 10 continue !xocl end spread return end