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第1章 差分法の基礎

松元亮治 (千葉大理)

この章では流体・磁気流体方程式を差分法を用いて数値的に解く際に必要になる基礎的事項に
ついて解説する。波の伝播をあらわす線形移流方程式や非線形の Burgers方程式をとりあげ、
差分解法の数値的な安定性や数値振動について論じる。特に、数値的な安定性に優れ、非物理
的な数値振動を起こさない差分法として風上差分法を紹介する。

1.1 偏微分方程式の型
流体・磁気流体現象をはじめとする自然現象の多くは、以下の 2次元 2階偏微分方程式で記

述される。

a
∂2u

∂x2 + b
∂2u

∂x∂y
+ c

∂2u

∂y2 + d
∂u

∂x
+ e

∂u

∂y
+ fu + g = 0. (1.1)

この方程式は以下のように分類できる。

条件　　　　　　　　 型　　　　　　　 　　　　　　例　　　

b2 − 4ac > 0 双曲型
∂2u

∂t2
− c2 ∂2u

∂x2 = 0 波動方程式

b2 − 4ac = 0 放物型
∂u

∂t
= κ

∂2u

∂x2 熱伝導方程式

b2 − 4ac < 0 楕円型
∂2u

∂x2 +
∂2u

∂y2 = 4πGρ ポアソン方程式

波動方程式、熱伝導の式、ポアソン方程式は、それぞれ双曲型、放物型、楕円型偏微分方程
式の例になっている。以下では主として双曲型方程式を例にして、差分近似にもとづく偏微分
方程式の数値解法を解説する。
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1.2 差分近似
変数 uが空間座標 x, yに依存するという 2次元問題を考える。

x

x

y

∆
∆y

(i, j)(i-1, j) (i+1, j)

(i, j+1)

(i, j-1)

図 1.1: 2次元メッシュの図

2次元空間を図のような格子に区切り、各格子点の座標を (xi, yj)とする。格子間隔は x方向
が∆x、y方向が∆y とする。xi±1 = xi ±∆x、yj±1 = yj ±∆y である。以下、格子点番号 (i, j)

を用いて ui,j = u(xi, yj)のように略記する。
着目している点 (xi, yj)のまわりでテイラー展開すると、

ui+1,j = u(xi + ∆x, yj) = ui,j + ∆x

(
∂u

∂x

)
i

+
∆x2

2!

(
∂2u

∂x2

)
i

+
∆x3

3!

(
∂3u

∂x3

)
i

+ ...　 (1.2)

ui−1,j = u(xi − ∆x, yj) = ui,j − ∆x

(
∂u

∂x

)
i

+
∆x2

2!

(
∂2u

∂x2

)
i

− ∆x3

3!

(
∂3u

∂x3

)
i

+ ... (1.3)

式 (1.2)から式 (1.3)を引くと

ui+1,j − ui−1,j = 2∆x

(
∂u

∂x

)
i

+ O(∆x3) (1.4)

したがって、
(

∂u

∂x

)
i

=
ui+1,j − ui−1,j

2∆x
+ O(∆x2) (1.5)

すなわち、(i, j)点における uの x方向の微分係数 (∂u/∂x)iが∆x2の誤差を含む近似のもと
で (∆xについて 2次の精度で)以下のように求まる

(
∂u

∂x

)
i

=
ui+1,j − ui−1,j

2∆x
(1.6)
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これを中心差分の式と言う。
同様にして、∆xについて 1次の精度で以下の差分近似式が得られる。

(
∂u

∂x

)
i

=
ui+1,j − ui,j

∆x
(前進差分) (1.7)

(
∂u

∂x

)
i

=
ui,j − ui−1,j

∆x
(後退差分) (1.8)

式 (1.2)と式 (1.3)を加えると

ui+1,j + ui−1,j = 2ui,j + ∆x2

(
∂2u

∂x2

)
i

+ O(∆x4) (1.9)

したがって、
(

∂2u

∂x2

)
i

=
ui+1,j − 2ui,j + ui−1,j

∆x2
+ O(∆x2) (1.10)

これより、uの xに関する 2階微分の係数 (∂2u/∂x2)iを∆xについて 2次の精度で以下のよ
うに近似することができる

(
∂2u

∂x2

)
i

=
ui+1,j − 2ui,j + ui−1,j

∆x2
(1.11)

同様に、
(

∂2u

∂y2

)
j

=
ui,j+1 − 2ui,j + ui,j−1

∆y2
. (1.12)

1.3 線形スカラー移流方程式の差分解法

1.3.1 １次元線形スカラー移流方程式

流体・磁気流体方程式の本質は波の伝播にある。この部分だけを取り出して次のような方程
式を考える。

∂u

∂t
+ c

∂u

∂x
= 0 (1.13)

ただし、cは定数で c > 0 とする。この方程式は、スカラー量 uの空間分布が、一定の速度 c

で伝播することをあらわす波動方程式である。
方程式 (1.13)の厳密解は

u(x, t) = u(x − ct, 0) (1.14)
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c

図 1.2: 1次元スカラー移流問題の初期条件と時間発展

である。これは、時刻 t > 0におけるスカラー量 uのプロフィールは t = 0のスカラー量 uの
プロフィールが形を保って ctだけ平行移動した形になることをあらわす。
いま、図 1.2のように初期に x ≥ 0 で u = u1、x < 0 で u = u2 のように x = 0で不連続な

分布を考えてみると t > 0 での厳密解は右図のような形になる。

1.3.2 FTCSスキーム

1次元線形スカラー移流方程式 (1.13)を時間について現在の時刻 tnと∆t後の時刻 tn+1 =

tn + ∆tの間で前進差分、空間については中心差分をとって差分化すると次式を得る。ここで、
un

j = u(xj, tn) である。

un+1
j − un

j

∆t
+ c

un
j+1 − un

j−1

2∆x
= 0 (1.15)

このような差分のとり方を FTCSスキーム (Forward in Time and Centered Difference in

Space)と言う。これを整理すると、

un+1
j = un

j − 1

2
ν(un

j+1 − un
j−1) (1.16)

ここで、νは次式で定義される数であり、クーラン数と呼ばれる。

ν ≡ c
∆t

∆x
(1.17)

式（1.16）の右辺は時刻 tnでの値、左辺は時刻 tn+1 = tn + ∆t での値だけで書けている。し
たがって、時刻 tnでの各格子点での値がわかっていれば直ちに 1タイムステップ後 (tn+1)の
各格子点での値を計算することができる。このような解法のことを陽解法と言う。FTCSス
キームにおける変数の依存関係を図示すると図 1.3のようになる。矢印は時刻 tn+1の白丸の点
の値を計算するのに時刻 tnの黒丸の格子点の値を使うことを示す。

1次元波動伝播のシミュレーションを行うアルゴリズムは一般に次のようになる。

1. 各メッシュ点の座標値 xjをセットする (メッシュ生成)
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n+1

t

n

x

boundary

j-1 j j+1

図 1.3: FTCSスキームにおける変数の依存関係

2. 各メッシュ点の初期値 uj(t = 0)をセットする (初期条件)

3. 時刻 tが、あらかじめ決められた終了時刻 tendに達するまで、あるいは決められた回数だ
け、以下を繰り返す

(a)左右の境界を除く各格子点について∆t後の値を差分式にもとづいて計算する (時間積
分)。たとえば FTCSスキームの場合には計算式 (1.16)を用いる。

(b) 左右の境界の値を境界条件から決める。たとえば隣接点と同じ値を入れる (境界条件の
適用)

(c) 時刻を∆tだけ進める
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図 1.4: 左図：FTCSスキームで、初期値として、j = 1, ..., 50に対して u = 1、j = 51, ..., 100

に対して u = 0とし、クーラン数 ν = c∆t/∆x = 0.25 で 1ステップ、2ステップ、3ステップ 1

計算したときの uをプロットした図。右図：50ステップ、100ステップ計算したときの u をプ
ロットした図。

FTCSスキームを用いて１次元線形スカラー移流方程式を解いた結果を図 1.4に示す。波は
形を保って伝わらずに振動が発生してしまっている。この振動は物理的な理由で発生している
のではなく、数値的不安定性によるものである。なぜこのような数値振動が発生してしまうの
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か、次節で説明する。

1.3.3 FTCSスキームの数値的安定性

Von Neumannの安定性解析

前節のFTCSスキームによって 1次元波動伝播のシミュレーションを行ってみると解が激し
く振動して数値的に不安定になってしまうことがわかった（図 1.4）。この不安定性の原因を調
べるために

un
j = cos(jθ) (1.18)

を差分式 (1.16)に代入してみる。ここで θは、波の波数を k として θ = k∆xであらわされる
量である。たとえば θ = π のとき un

j は図 1.5左図のように 2メッシュで 1波長の波、θ = π/3

のときは右図のように 6メッシュで 1波長の波をあらわす。

θ = π θ = π/3

j=0 1 2 3 4 j=0 1 2 3 4 5 6

図 1.5: メッシュ番号を jとしたときの un
j = cos(jθ)のプロフィール。左図: θ = πの場合。右

図： θ = π/3 の場合。

その結果は

un+1
j = cos(jθ) + νsinθsin(jθ) (1.19)

これをもう一度差分式に代入すると

un+2
j = (1 − ν2sin2θ)cos(jθ) + 2νsinθsin(jθ) (1.20)

= Re
[
(1 − iνsinθ)2eijθ

]
(1.21)

である。ここで、iは虚数単位、Reは実部をとることをあらわす。以上からわかるように、

un+k
j = Re

[
(1 − iνsinθ)keijθ

]
(1.22)

が成り立つ。
差分法 (差分スキーム)の数値的安定性を導くひとつの方法として、式 (1.18)を複素数に拡

張した
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un
j = gneijθ (1.23)

を差分式に代入して複素増幅率 gを求め、1タイムステップ間の振幅の増幅率 |g| ≤ 1 となる
条件を求める方法がある。これを Von Neumann の安定性解析と言う。

un
j = gnexp(ijθ)を FTCS差分式に代入すると

g = 1 − 1

2
ν(eiθ − e−iθ) (1.24)

= 1 − iνsinθ (1.25)

したがって

|g|2 = 1 + ν2sin2θ ≥ 1 (1.26)

以上の結果より、θ = 0 の場合を除いて FTCSスキームは常に不安定になる。

テイラー展開による方法

この節は最初に読む際には読み飛ばしてもかまわない。
差分化した式にテイラー展開を適用して差分式が満たす偏微分方程式を導くことによって

も FTCSスキームが数値的に不安定であることを示すことができる。tn+1 = tn + ∆t、xj±1 =

xj ± ∆x を用いると、

un+1
j = un

j +
∂u

∂t
∆t +

1

2

∂2u

∂t2
∆t2 + ... (1.27)

un
j+1 = un

j +
∂u

∂x
∆x +

1

2

∂2u

∂x2
∆x2 +

1

6

∂3u

∂x3
∆x3 + ... (1.28)

un
j−1 = un

j − ∂u

∂x
∆x +

1

2

∂2u

∂x2
∆x2 − 1

6

∂3u

∂x3
∆x3 + ... (1.29)

FTCSスキームの差分式

un+1
j − un

j = −1

2
ν(un

j+1 − un
j−1) (1.30)

の左辺に (1.27)、右辺に (1.28)、(1.29) を代入すると、

∂u

∂t
∆t +

1

2

∂2u

∂t2
∆t2 = −ν

(
∂u

∂x
∆x +

1

6

∂3u

∂x3
∆x3 + ...

)
(1.31)

これを整理すると
∂u

∂t
+ c

∂u

∂x
= −1

2

∂2u

∂t2
∆t − c

6

∂3u

∂x3
∆x2 + ... (1.32)
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ここで、解くべき偏微分方程式
∂u

∂t
= −c

∂u

∂x
(1.33)

より
∂2u

∂t2
= c2 ∂2u

∂x2
(1.34)

であることを用いると

∂u

∂t
+ c

∂u

∂x
= −c2

2

∂2u

∂x2
∆t − c

6

∂3u

∂x3
∆x2 + ... (1.35)

右辺が差分化によって新たに加わった項である。右辺第 1項は負の拡散係数を持つ拡散項に
なっている。「正の拡散」は物理量の値のピークをなまらせる働きがあるが、「負の拡散」では
物理量が周囲よりもわずかに高い値を持つ部分があるとこのピークがどんどん大きくなるとい
う不安定性を生ずる。
よって、テイラー展開法からもスカラー移流方程式のFTCSスキームは数値的に不安定であ

ることがわかる。

1.3.4 Lax-Friedrich のスキーム

この方法ではFTCSスキームの右辺の un
j を (un

j+1 + un
j−1)/2で置き換え、以下のように差分

化する。

un+1
j =

1

2
(un

j+1 + un
j−1) −

ν

2
(un

j+1 − un
j−1) (1.36)

un
j = gnexp(ijθ) を代入して増幅率 gを求めると

g =
1

2
(eiθ + e−iθ) − 1

2
(eiθ − e−iθ) (1.37)

= cosθ − iνsinθ (1.38)

したがって
|g|2 = cos2θ + ν2sin2θ (1.39)

図 1.6に増幅率 |g|を θの関数として極座標 (g, θ)で示す。Lax-Friedrich のスキームでは、
クーラン数 ν = c∆t/∆xが |ν| ≤ 1 を満たす場合、安定に計算を進めることができる。この条
件のことをCourant, Friedrich, Lewy 条件 (CFL条件あるいはクーラン条件)と言う。
クーラン条件の意味を考えてみよう。差分式 (1.36)を書き換えると以下の式を得る。

un+1
j =

1 − ν

2
un

j+1 +
1 + ν

2
un

j−1 (1.40)

クーラン条件 |ν| ≤ 1が満たされている場合、時刻 t = tn+1の値 un+1
j は t = tnの j − 1点の値

un
j−1と j + 1点の値 un

j+1の内挿値になっている。
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g

1-1

ν = 1

θ

ν=0.5

図 1.6: Lax-Friedrichスキームの場合の増幅率

n+1

t

n

x

boundary

j-1 j j+1

c ∆t

∆ x

図 1.7: Lax-Friedrichスキームにおける依存関係。破線と点線はそれぞれ ν < 1、ν > 1 の場
合の波の伝播を示す。

図 1.7に Lax-Friedrichスキームにおける変数の依存関係を示す。実線は時刻 t = tn+1の白丸
の格子点の値を計算する際に用いられる時刻 t = tnの格子点、破線は ν = c∆t/∆x < 1の場
合、点線は ν > 1の場合の波の伝播を示す。
クーラン条件は |c|∆t < ∆x、すなわち時間間隔∆tの間に波が１メッシュ以上伝わってはい

けないことを意味する。un+1
j は un

j−1と un
j+1だけから計算されるが、時間間隔が∆t > ∆x/|c|

となると xj−1 ≤ x ≤ xj+1より外側からも情報が伝わってくるため計算を安定に進めることが
できなくなるのである。
図 1.8にLax-Friedrichスキームを用いて１次元線形スカラー移流方程式の解を求めた結果を

示す。数値振動のない解が得られている。Lax-Friedrichスキームの欠点は数値散逸が大きく、
不連続面が時間とともになまってしまうことである。

1.3.5 1次精度風上差分法

図 1.9のように波が正の方向に伝わっている場合を考える。このとき、j点での空間微分を、
j点と風上にあたる j − 1点の間の差分で近似する方法が風上差分である。
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図 1.8: Lax-Friedrichスキームを用いた１次元線形スカラー移流問題のシミュレーション結果。
クーラン数 ν = 0.25で 50ステップ、100ステップ計算した結果を示す。

j-1 j j+1

c > 0
n+1

t

n

x

boundary

j-1 j j+1

c ∆t

∆ x

図 1.9: 左図：右方向に伝わる波、右図：1次精度風上差分における依存関係。破線は波による
情報の伝達を示す。

1次元スカラー移流方程式を時間については前進差分、空間については風上差分として差分
化すると、c > 0の場合、以下の差分式を得る。

un+1
j − un

j

∆t
+ c

un
j − un

j−1

∆x
= 0 (1.41)

したがって

un+1
j = un

j − c
∆t

∆x
(un

j − un
j−1) (1.42)

図 1.9右図に 1次精度風上差分における変数の依存関係を示す。黒丸は時刻 tn+1の白丸の格
子点の値を計算する際に用いられる時刻 tnの格子点、破線は時刻 tn+1に白丸の格子点に到達
する波の伝播を示す。
増幅率は

g = 1 − ν(1 − e−iθ) (1.43)
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= (1 − ν + νcosθ) − iνsinθ (1.44)

したがって

|g|2 = (1 − ν + νcosθ)2 + ν2sin2θ (1.45)

= 1 − 2ν(1 − ν)(1 − cosθ) (1.46)

これより、0 ≤ ν ≤ 1の場合、任意の θについて |g| ≤ 1であり、安定であることがわかる。
風上差分の差分式（1.42）は次のようにも書ける。

un+1
j = (1 − ν)un

j + νun
j−1. (1.47)

クーラン条件 0 ≤ ν ≤ 1が満たされている場合、un+1
j は時刻 t = tn+1に j番目の格子点に到達

する波の t = tnでの位置（図 1.9の破線矢印の出発点）における値 u(xj − c∆t, tn) を un
j−1と

un
j から線形内挿した値になっている。
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図 1.10: 1次精度風上差分法を用いた１次元線形スカラー移流問題のシミュレーション結果。
左：クーラン数 ν = 0.25で 50ステップ、100ステップ計算した結果。右：ν = 0.80で 16ステッ
プ、32ステップ計算した結果。

図 1.10に１次精度風上差分法を用いたシミュレーション結果を示す。

練習問題

• クーラン数 νが 1,0.75,0.5 の場合について 1次精度風上差分の増幅率 |g|を位相 θの関数
として求め、極座標 (|g|, θ)でプロットせよ。

• 1次精度風上差分法の差分式 (1.42)にテイラー展開を適用することによって、以下の偏
微分方程式が得られることを示せ。右辺第 1項が拡散項であることに注意して、クーラ
ン条件を導け。

∂u

∂t
+ c

∂u

∂x
=

1

2
c∆x(1 − ν)

∂2u

∂x2
− 1

6
c(∆x)2(2ν2 − 3ν + 1)

∂3u

∂x3
+ ... (1.48)
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1.3.6 Lax-Wendroffのスキーム

Lax-Wendroffスキームはテイラー展開にもとづく差分法であり、以下のようにして導かれる。

un+1
j = un

j + ∆t
∂u

∂t
+

1

2
∆t2

∂2u

∂t2
+ O(∆t3) (1.49)

右辺第 2項、第 3項に ∂u/∂t = −c∂u/∂x、∂2u/∂t2 = c2∂2u/∂x2を代入すると

un+1
j = un

j − c∆t
∂u

∂x
+

1

2
c2∆t2

∂2u

∂x2
+ O(∆t3) (1.50)

空間微分 ∂u/∂x、∂2u/∂x2をそれぞれ中心差分で近似すると

un+1
j = un

j − 1

2
c∆t

un
j+1 − un

j−1

∆x
+

1

2
c2
(

∆t

∆x

)2

(un
j+1 − 2un

j + un
j−1) (1.51)

これがLax-Wendroffスキームである。以上の導出過程からわかるように、Lax-Wendroffスキー
ムは空間、時間についていずれも 2次精度の解法になっている。

Lax-Wendroffスキームの安定性を von Neumannの方法で調べてみる。増幅率は

g = 1 − ν

2
(eiθ − e−iθ) +

ν2

2
(eiθ − 2 + e−iθ) (1.52)

= 1 − iνsinθ + ν2cosθ − ν2 (1.53)

したがって、

|g|2 = [1 − ν2(1 − cosθ)]2 + ν2sin2θ (1.54)

= 1 − 2ν2(1 − ν2)(1 − cosθ) (1.55)

これより、|ν| ≤ 1 であれば任意の θについて |g| ≤ 1 であり、安定であることがわかる。
1次元スカラー方程式の場合、Lax-Wendroffスキームは以下のように 2段階に分けたスキー

ムと同等である。この方法を 2段階 Lax-Wendroff法と呼ぶ。

u
n+1/2
j+1/2 =

un
j+1 + un

j

2
− 1

2
c
∆t

∆x
(un

j+1 − un
j ) (1.56)

un+1
j = un

j − c
∆t

∆x
(u

n+1/2
j+1/2 − u

n+1/2
j−1/2 ) (1.57)

これを図示すると図 1.11 のようになる。
図 1.12に Lax-Wendroff法を用いて 1次元線形スカラー移流方程式の数値解を求めた結果を

示す。
Lax-Wendroff法は空間、時間についていずれも 2次精度の方法であるが、不連続面近傍で数

値振動を生じるという欠点を持つ。これに関して、以下の定理が知られている。

Godunov の定理

1次元スカラー移流方程式 ∂u/∂t + c∂u/∂x = 0に対して、
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n+1

t

n

x

boundary

j-1 j j+1

n+1/2

図 1.11: 2段階 Lax-Wendroffスキームにおける依存関係。第一段階で時刻 tnにおける格子点
j − 1、j、j + 1の値から時刻 tn+1/2 における格子点 j − 1/2、j + 1/2の値が計算される。第二
段階ではこれらの点の値を用いて時刻 tn+1の白丸の格子点の値が求まる。

un+1
j =

∑
k

aku
n
j+k (1.58)

の形の 2次精度以上の精度を持つどのようなスキームも解の単調性を維持することはできない。

ここで、「解の単調性を維持する」とは、時刻 tnにおけるプロフィール u(x, tn)が xに関し
て単調増加または単調減少する関数であるならば時刻 tn+1における関数 u(x, tn+1)も単調増加
または単調減少関数でなければならないことを意味する。たとえば１次精度風上差分の場合、
0 ≤ ν ≤ 1なら un+1

j は必ず un
j−1 と un

j の間の値をとるため、もしも un
j−1 ≤ un

j ≤ un
j+1 なら

un+1
j ≤ un+1

j+1 となり、単調性が維持される。Godunovの定理の証明については、たとえば藤井
(1994)を参照されたい。
数値振動を抑える方法には以下のものがある。

• 人工粘性を加える
粘性係数を κとして、

ũn+1
j = un+1

j + κ
∆t

∆x2 (un
j+1 − 2un

j + un
j−1) (1.59)

とする。

拡散係数 κは、たとえば以下のように不連続面付近で大きな値をとるように決める。Qv

はパラメータである。

κj+1/2 = Qv∆x|un
j+1 − un

j | (1.60)

• 流束制限関数を用いる
これについては後述する。
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図 1.12: 2段階 Lax-Wendroff法による１次元線形スカラー移流方程式のシミュレーション結
果。左図：クーラン数 ν = 0.25で 50ステップ、100ステップ計算した結果。右図：クーラン
数 ν = 0.80で 16ステップ、32ステップ計算した結果。

1.4 保存形表示と数値流束
1次元スカラー移流方程式

∂u

∂t
+ c

∂u

∂x
= 0 (1.61)

を以下の形に変形する
∂u

∂t
+

∂f

∂x
= 0 (1.62)

ここで、
f = cu (1.63)

は流束をあらわす。式 (1.62)の形を保存形と呼ぶ。
保存形式の物理的意味を考えるために、図 1.13に四角で囲って示した領域 (xj−1/2 < x <

xj+1/2)における保存量uの時間変化を求めてみよう。方程式 (1.62)を x = xj−1/2からx = xj+1/2

まで積分すると次式を得る。

∂

∂t

∫ xj+1/2

xj−1/2

udx + f(xj+1/2) − f(xj−1/2) = 0. (1.64)

したがって、保存量 uの積分量

un
j =

∫ xj+1/2

xj−1/2

u(x, tn)dx (1.65)

の時間変化は、この時間の間に左右の境界 xj±1/2を通って出入りする流束 fj±1/2 の差に等し
い。これより次式を得る。

un+1
j = un

j − ∆t

∆x
(fn

j+1/2 − fn
j−1/2) (1.66)
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j-1 j j+1

f j-1/2 f j+1/2

図 1.13: メッシュ点とメッシュ境界を通って出入りする流束の関係

差分式 (1.66)は保存則を厳密に満たす。これが保存形式を用いる利点である。
メッシュ境界の流束 fn

j±1/2は各メッシュ点での流束から近似的に計算することができる。こ
れを数値流束と言い、f̃n

j±1/2 であらわす。各種差分スキームの差分式から数値流束を求める
と以下のようになる。

• FTCS

f̃n
j+1/2 =

1

2
(fn

j+1 + fn
j ) (1.67)

• Lax-Friedrich

f̃n
j+1/2 =

1

2

[
(1 − 1

ν
)fn

j+1 + (1 +
1

ν
)fn

j

]
(1.68)

• Upwind (風上差分)

f̃n
j+1/2 =

1

2

[
(fn

j+1 + fn
j ) − |c|(un

j+1 − un
j )
]

(1.69)

この式は、c > 0の場合は f̃n
j+1/2 = fn

j、c < 0の場合は f̃j+1/2 = fn
j+1 と一致する。

• Lax-Wendroff

f̃n
j+1/2 =

1

2

[
(1 − ν)fn

j+1 + (1 + ν)fn
j

]
(1.70)

1.5 Burgers方程式の数値解法
ここまでは、移流の速さ cが一定の場合の１次元線形スカラー移流方程式を扱ってきた。本

節では、以下のような非線形波動方程式を差分近似によって解くことを考える。これは、非
粘性の場合のBurgers方程式である。

∂u

∂t
+ u

∂u

∂x
= 0 (1.71)
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この方程式は流線に沿うラグランジュ微分 d/dt = ∂/∂t + u∂/∂x を用いると次のように表現
できる。

du

dt
= 0 (1.72)

粒子的な描像に立てば、この方程式は力を受けていない粒子の運動を記述しており、その解
はもちろん u =一定 である。初期速度分布が正弦波的な場合、図 1.14に示すように、振幅が
正の 領域は+x方向に、負の領域は −x方向に移動してしだいに波が突っ立ち、有限の時刻で
後からきた粒子が前の粒子に追いついてしまう。連続系では空間の１点で速度が多価になるこ
とはできないため、このような場合に解に不連続が生じる。

図 1.14: Burgers方程式の解の様子。ある有限の時刻で後ろからきた粒子が前の粒子に追い
つく。

-40 -20 0 20 40 60 80 100
x
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1.00

1.01

u

0 16 32 48

-40 -20 0 20 40 60 80 100
x

-0.99

-1.00

-1.01

u

0163248

図 1.15: Burgers方程式を１次精度風上差分法で解いた結果の例。左：初期に u > 0 の場合。
右：初期に u < 0の場合。図中の数字は時間ステップ数。時間きざみは∆t/∆x = 0.8とした。

Burgers方程式を差分法によって解くため、方程式をまず、以下のような保存系に変形する。
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∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 (1.73)

これは、流束 f(x)が f(x) = u2/2の場合に相当し、各種差分スキームを適用することがで
きる。たとえば１次精度の風上差分法を適用する場合、線形スカラー方程式で移流の速さ cが
一定である場合には c > 0のとき fn

j+1/2 = fn
j であったことに注意し、メッシュ境界の j + 1/2

点での速さを (uj(t) + uj+1(t))/2 で近似すると、

• uj+1(t) + uj(t) > 0 のとき、fn
j+1/2 = fn

j = |uj(t)|2/2

• uj+1(t) + uj(t) ≤ 0のとき、fn
j+1/2 = fn

j+1 = |uj+1(t)|2/2

図 1.15に初期に u(x) = 1 + εsin(kx) (ε = 0.01, 0 ≤ kx ≤ 2π) のような速度分布を与えた場
合のBurgers方程式の解を１次精度の風上差分法で計算した結果を示す。図 1.15左図の場合、
初期に u ∼ 1であることから予想できるように非線形効果が小さい間の解は波の速さが c = 1

の場合の線形スカラー移流方程式の解とほぼ一致し、波はほぼその形を保ちながら右側に伝
わっていく。図 1.15左図では初期に u ∼ −1であり、波は左に伝わる。
非線形性が強くなる場合のBurgers方程式の数値解の例を図 1.16に示す。この例では初期に

u(x) = 1 + 0.1sin(kx)のような速度分布を与え、その後の時間発展を１次精度の風上差分法に
よって解いた。Burgers方程式の非線形項 u∂u/∂xの効果により波がしだいに突っ立ち、不連
続（衝撃波）が形成されることがわかる。
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x
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1.00
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図 1.16: 初期に u(x) = 1 + 0.1sin(kx)の速度分布から始めた場合の Burgers方程式の数値解。
図中の数字は時間ステップ数。１次精度風上差分法で時間きざみは∆t/∆x = 0.8とした。
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1.6 流束制限関数
以上、線形スカラー移流方程式とBurgers方程式を例にして差分解法について解説してきた。

１次精度の風上差分法を用いるとこれらの方程式の解にあらわれる不連続面を数値振動を起こ
すことなくとらえることができる。しかしながら、Godunovの定理が示すように、空間２次
精度以上の解法では数値振動があらわれてしまうことがわかった。

Lax-Wendroff法の数値流束を補正することによって、不連続面近傍での振動を抑えること
ができないかどうか考えてみよう。Lax-Wendroff法の数値流束は次のようにも書ける。

f̃n
j+1/2 = c[un

j +
1

2
(1 − ν)(un

j+1 − un
j )] (1.74)

数値振動が生じない 1次精度の風上差分の数値流束は c > 0のとき f̃n
j+1/2 = cuj であり、Lax-

Wendroff法の数値流束の右辺第 1項と一致している。そこで、Lax-Wendroff法の数値流束の
右辺第 2項を次のように補正してみる。

f̃n
j+1/2 = c[un

j +
1

2
(1 − ν)Bj+1/2(u

n
j+1 − un

j )] (1.75)

ここで導入したBj+1/2のことを流束制限関数と呼ぶ。数値流束 (1.75)を差分式 (1.66)に代
入して変形すると次式を得る。

un+1
j − un

j

un
j−1 − un

j

= ν[1 − 1

2
(1 − ν)Bj−1/2] +

1

2
ν(1 − ν)

Bj+1/2

rj

(1.76)

ここで、

rj ≡
un

j − un
j−1

un
j+1 − un

j

(1.77)

である。

u j-1

n

u j

n

u
j

n+1

図 1.17: 数値振動が生じないようにするために un+1
j の値を制限する範囲

数値振動が生じないようにするために、図 1.17に示したように un+1
j が un

j と un
j−1の間の値

をとるように制限を加えることにしよう。これには、式 (1.76) の左辺の値を以下のように制限
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すればよい。

0 ≤ un+1
j − un

j

un
j−1 − un

j

≤ 1 (1.78)

式 (1.76)の右辺を代入すると以下の条件を得る。

−2

ν
≤ Bj−1/2 − Bj+1/2

rj

≤ 2

1 − ν
(1.79)

CFL条件が満たされている場合 0 ≤ ν ≤ 1 なので、

−2 ≤ Bj−1/2 − Bj+1/2

rj

≤ 2 (1.80)

この関係式は、以下のふたつの条件がともに満たされれば成立する。

0 ≤ Bj+1/2 ≤ 2 (1.81)

かつ

0 ≤ Bj+1/2

rj

≤ 2 (1.82)

この範囲を図示すると図 1.18の斜線のない領域になる。r < 0の場合はBj+1/2 = 0のみが許
される。

1

1

2

2

B j+1/2

r

LW

minmod

O

B = 2r

図 1.18: 流束制限関数Bj+1/2(r)の許容範囲。LWは Lax-Wendroff スキームの数値流束に対応
する制限関数。minmodは minmod関数。

Lax-Wendroff法の数値流束ではBj+1/2 = 1 (図の LW)であるため、r < 1/2の領域で許容範
囲外となり、数値振動が生じる。図の許容範囲内にある流束制限関数を用いることにより、数
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値振動が起こらないようにすることができる。その一例は以下のminmod関数 (図のminmod)

である。

minmod(r) =




0 (r < 0)

r (0 ≤ r ≤ 1)

1 (r > 1)

(1.83)

1.7 TVDスキーム
前節では、数値振動をおさえる方法として流束制限関数を導入した。ここでは、数値振動の

発生を定量化する方法について考える。
このために、1次元線形スカラー移流方程式において以下の量を定義する。

U =
∫ ∣∣∣∣∣du

dx

∣∣∣∣∣ dx. (1.84)

この量は波の振幅の総和に等しく、移流方程式の厳密解では波のプロフィールが保たれるため、
dU/dt = 0 である。
以上との類推により、メッシュ点ごとの物理量の変化量の総和を次式のように定義し、これ

をTotal Variation (TV)と言う。

TV (un) ≡∑
j

|un
j+1 − un

j | (1.85)

Total Variation が時間とともに増大しないという条件

TV (un+1) ≤ TV (un) (1.86)

のことをTotal Variation Diminishing (TVD)条件と呼ぶ。
流束制限関数を導入することによって、差分スキームがTVD条件を満たすようにすること

ができる。

1.8 放物型方程式の差分解法
天体シミュレーションにあらわれる放物型方程式

• 熱伝導方程式
∂T

∂t
= κ∇2T

• 磁気拡散方程式
∂B

∂t
= η∇2B
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以下のような 1次元拡散方程式を差分近似によって初期値問題として解くことを考えてみよ
う。すなわち、時刻 t = 0における u(x, t)の値 u(x, 0)を与えて、任意の時刻 t (> 0)における
u(x, t)を求める。

∂u

∂t
= κ

∂2u

∂x2
(1.87)

拡散係数 κは xに依らないとする。よく知られているように、この方程式の解は初期条件を
フーリエ変換することによって解析的に求めることができる。解のおおまかな様子を図に示す。

x

u
t = 0

t > 0

図 1.19: 拡散方程式の解の時間発展の様子

拡散方程式の陽解法 (explicit法)

1次元拡散方程式 (1.87)を時間について現在の時刻 tnと∆t後の時刻 tn+1 = tn + ∆tの間で
前進差分、空間については中心差分 (FTCS差分）をとって差分化すると次式を得る。ここで、
un

j = u(xj, tn) である。

un+1
j − un

j

∆t
= κ

un
j+1 − 2un

j + un
j−1

∆x2
(1.88)

式 (1.88)を変形して次式を得る

un+1
j = un

j +
κ∆t

∆x2
(un

j+1 − 2un
j + un

j−1) (1.89)

右辺は時刻 tnでの値、左辺は時刻 tn+1 = tn + ∆t での値だけで書けている。したがって、時
刻 tnでの各格子点での値がわかっていれば直ちに 1タイムステップ後 (tn+1)の各格子点での
値を計算することができる (陽解法）。



28 第 1章 差分法の基礎

Von Neumannの安定性解析

FTCSスキームの数値的安定性を調べるために un
j = gnexp(ijθ)を FTCS差分式に代入す

ると

gn+1eijθ = gneijθ +
κ∆t

∆x2
gn[ei(j+1)θ − 2eijθ + ei(j−1)θ]. (1.90)

よって、

g = 1 − 2
κ∆t

∆x2
(1 − cosθ). (1.91)

増幅率が |g| ≤ 1 であるためには

−1 ≤ 1 − 2
κ∆t

∆x2
(1 − cosθ) ≤ 1. (1.92)

したがって、

0 ≤ κ∆t

∆x2
(1 − cosθ) =

κ∆t

∆x2
2sin2 θ

2
≤ 1. (1.93)

任意の θ (任意の波長の波)について安定であるためには

0 ≤ κ∆t

∆x2
≤ 1

2
. (1.94)

以上により、FTCSスキームにより 1次元拡散方程式のシミュレーションを行う場合、時間
ステップ ∆t が上式を満たすようにコントロールする必要があることがわかる。たとえばメッ
シュサイズを半分にした場合、∆t は 1/4にしなければならない。

拡散方程式の陰解法 (implicit法)

拡散方程式を差分化する際に右辺の空間差分の部分に、求めるべき tn+1での uの値を含め
て差分化する方法がある。このような方法を陰解法(implicit)法と呼び、explicit法とは安定性
条件が異ってくる。代表的な陰解法である Crank-Nicolson 法では、パラメータ λを導入して、
以下のように差分化する。

un+1
j − un

j

∆t
= κ

[
λ

un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
+ (1 − λ)

un
j+1 − 2un

j + un
j−1

∆x2

]
(1.95)

これを整理すると次のような行列を含む式になる。

Aun+1 = b(un). (1.96)

これを解いて un+1を求めればよい。

練習問題

1. 行列Aとベクトル bの各要素を求めなさい。
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2. Von Neumann の安定性解析により、λ > 1/2 ならば κ∆t/∆x2 > 0 を満たす任意の∆t に
ついてCrank-Nicolsonスキームは数値的に安定であることを示しなさい。
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