
61

第3章 流体および磁気流体力学方程式の風
上差分

花輪知幸（名大理）

3.1 はじめに
私たちは初日に移流方程式やBurgers 方程式の数値解法として、風上差分法を習った。風上

差分法は衝撃波の取り扱いに優れていることや、非物理的な数値振動を起こさない (=TVD条
件を遵守する)ことを学んだ。昨日は、流体力学方程式や磁気流体力学方程式は波動方程式の
集合体—システム方程式—であることを学んだ。この 2日間の学習成果を総合すると、風上差
分法は流体力学方程式や磁気流体力学方程式の数値解法としても有効であろうと容易に想像で
きる。実際、衝撃波を伴う (磁気)流れを解析する方法として多くの数値計算コードに採用され
ている。
「流束は風上で評価せよ」という風上差分法の原理 (概念)は単純であるが、これを実際に流
体力学方程式や磁気流体力学方程式に応用することは簡単ではない。最初に習った線型波動方
程式は 1成分で波の位相速度が一定であったのに対し、流体力学方程式は連立であり波の速度
も時間や場所によって異なるためである。これらの違いをまとめたのが表 3.1である。

名称 変数 自由度 線型/非線型 方程式
移流方程式 u 1 線型 3.1

Burgers方程式 u 1 非線型 3.2, 3.3

Maxwell方程式 Ey, Ez, Bx, By 4 線型 3.4, 3.5

流体力学方程式 ρ, v, P 3 非線型 3.6

磁気流体力学方程式 ρ, vx, vy, vz, By, Bz 7 非線型 3.7

表 3.1: さまざまな波動方程式の比較。変数の数は独立変数を (x, t) とした 1次元の場合で数
えた。

移流方程式
∂u

∂t
+ c

∂u

∂x
= 0 (3.1)

Burgers 方程式 [波の速度を明示した形式 (上)と流束を明示した形式 (下)

∂u

∂t
+ u

∂u

∂x
= 0 (3.2)
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∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 (3.3)

(真空中の)Maxwell 方程式 [ベクトル形式と成分ごとに分解した形式]

1

c

∂E

∂t
− ∇ × B = 0

1

c

∂B

∂t
+ ∇ × E = 0 (3.4)

∂Ey

∂t
+ c

∂Bz

∂x
= 0

∂Ez

∂t
− c

∂By

∂x
= 0

∂By

∂t
− c

∂Ez

∂x
= 0

∂Bz

∂t
+ c

∂Ey

∂x
= 0 (3.5)

流体力学方程式

∂

∂t




ρ

ρv
ρv2

2
+

P

γ − 1


 +

∂

∂x




ρv

ρv2 + P
ρv3

2
+

γ Pv

γ − 1


 = 0 (3.6)

磁気流体力学方程式

∂

∂t




ρ

ρvx

ρvy

ρvz

By

Bz

ρE




+
∂

∂x




ρu

ρu2 + P +
By

2 + Bz
2 − Bx

2

8π

ρuv − BxBy

4π

ρuw − BxBz

4π
Byu − vBx

Bzu − wBx

ρHu − Bx (Bxu + Byv + Bzw)

4π




= 0 (3.7)

E =
u2 + v2 + w2

2
+

P

(γ − 1) ρ
+

Bx
2 + By

2 + Bz
2

8πρ
(3.8)

H =
u2 + v2 + w2

2
+

γP

(γ − 1) ρ
+

Bx
2 + By

2 + Bz
2

4πρ
(3.9)

この表では波動方程式が数学的に易しいほうから難しい方へと並べられている。Burgers方程
式は非線型なので移流方程式より難しい。Maxwell方程式は連立方程式で変数が多いので難し
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い。流体力学方程式は非線型である上に連立なので一層難しい。また変数が増えるので、磁気
流体力学方程式はさらに一層難しい。
最初から流体力学方程式や磁気流体力学方程式の風上差分を考えるのは難しいので、本講義

では最初にMaxwell方程式を例にとり、連立方程式の解き方を学ぶ。次にBurgers方程式の風
上差分を簡単におさらいし、流体力学および磁気流体力学の風上差分を学ぶ。

3.2 Maxwell方程式の数値解法
Maxwell 方程式 (3.5)の 1段目と 4段目の和と差、2段目と 3段目の和と差は

∂

∂t
(Ey + Bz) + c

∂

∂x
(Ey + Bz) = 0 (3.10)

∂

∂t
(Ey − Bz) − c

∂

∂x
(Ey − Bz) = 0 (3.11)

∂

∂t
(Ez + By) − c

∂

∂x
(Ez + By) = 0 (3.12)

∂

∂t
(Ez − By) + c

∂

∂x
(Ez − By) = 0 (3.13)

と表される。このように書き換えると 1段目の従属変数はEy + Bz だけとなる。従って改め
て u = Ey + Bz と置き換えると、この方程式は移流方程式に変形できることが分かる。2段
目以降も同様なので、

∂w1

∂t
+ c

∂w1

∂x
= 0 (3.14)

∂w2

∂t
− c

∂w2

∂x
= 0 (3.15)

∂w3

∂t
− c

∂w3

∂x
= 0 (3.16)

∂w1

∂t
+ c

∂w4

∂x
= 0 (3.17)

w1 = Ey + Bz (3.18)

w2 = Ey − Bz (3.19)

w3 = Ez − By (3.20)

w4 = Ez + By (3.21)

Ey =
w1 + w2

2
(3.22)

Ez =
w3 + w4

2
(3.23)

By =
w1 − w2

2
(3.24)

Bz =
w3 − w4

2
(3.25)

と書き換えられる。Maxwell方程式は式 (3.14)-(3.17)のような移流方程式の集まりである。こ
れらはそれぞれ独立なので、初日に習った風上差分法で解くことができる。この移流方程式の



64 第 3章 流体および磁気流体力学方程式の風上差分

図 3.1: 変数Ey, Bz, w1, w4の関係を幾何学的に示した図。

変数w1, w2, w3, w4は式 (3.18)- (3.21)より求めることができる。また式 (3.22)-(3.25)を用いれ
ば、Ey, Ez, By, Bzを求めることができる (図 3.2)。

[発展問題] 変数Ey + BzやEy − Bz の物理的な意味を述べよ。

上記の結果を見通しよくするために、行列を使って計算してみよう。

∂

∂t




Ey

Ez

By

Bz


 +




0 0 0 c

0 0 −c 0

0 −c 0 0

c 0 0 0




∂

∂x




Ey

Ez

By

Bz


 = 0 (3.26)

∂u

∂t
+ A

∂u

∂x
(3.27)

u =




Ey

Ez

By

Bz


 (3.28)

A =




0 0 0 c

0 0 −c 0

0 −c 0 0

c 0 0 0


 (3.29)
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方程式 (3.27)を移流方程式 [式 (3.1)]と比較すると、変数 uがベクトルになったのに伴い、波
の速度 cが行列Aに変化していることに気づく。Maxwellの方程式に現れる波の速度±cは、
行列Aの固有値として求めることができる。

|A − λ I| = 0 (3.30)

ここで Iは単位行列を表す。具体的に計算すると∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 c

0 −λ −c 0

0 −c −λ 0

c 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣
= 0 ↔ (λ − c)2 (λ + c)2 = 0 (3.31)

このようにして求まった固有値 (λk) と右固有ベクトル (rk)

A rk = λk rk (3.32)

r1 =




1/2

0

0

1/2


 , λ1 = c (3.33)

r2 =




1/2

0

0

−1/2


 , λ2 = −c (3.34)

r3 =




0

1/2

1/2

0


 , λ3 = −c (3.35)

r4 =




0

1/2

−1/2

0


 , λ4 = c (3.36)

が求められる。この右固有ベクトルと式 (3.22)-(3.25)が類似しているので、ベクトルuを右固
有ベクトルの線型結合

u =




Ey

Ez

By

Bz


 = w1 r1 + w2 r2 + w3 r3 + w4 r4 =

4∑
k=1

wk rk (3.37)
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で表すことができる。これからの計算を簡単にするため、縦ベクトルw、横ベクトル tw、行
列Rを

w =




w1

w2

w3

w4


 (3.38)

tw = (w1, w2, w3, w4) (3.39)

R =




tr1

tr2

tr3

tr4


 =




1/2 0 0 1/2

0 1/2 1/2 0

0 1/2 −1/2 0

1/2 0 0 −1/2


 (3.40)

と定義すると
u = Rw (3.41)

と表すことができる。この行列Rの逆行列をLとすると、

L =




1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1


 =




�1

�2

�3

�4


 (3.42)

�1 = (1/2, 0, 0, 1/2) = 2 tr1 (3.43)

�2 = (1/2, 0, 0, −1/2) = 2 tr2 (3.44)

�3 = (0, 1/2, 1/2, 0) = 2 tr3 (3.45)

�4 = (0, 1/2, −1/2, 0) = 2 tr4 (3.46)

従って逆行列Lは、Rの行と列を入れ替え 2倍したものに他ならない。これは固有ベクトル
が互いに直行していて、その長さが |rk|2 = 2だからである。このため逆行列Lの各行もやは
り行列Aの (左)固有ベクトルとなる。

�kA = λk �k (3.47)

この逆行列を使うと、式 (3.18)-(3.21)は、

w = Lu (3.48)

とまとめられる。これは式 (3.41)にLを掛け、右辺と左辺を取り替えたものとも等しい。
このようにして決められた行列RとLを使うと、

∂u

∂t
+ A

∂u

∂x
= 0 (3.49)
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∂(Lu)

∂t
+ Λ

∂(Lu)

∂x
= 0 (3.50)

RL = LR = I (3.51)

Λ = LAR =




−c 0 0 0

0 c 0 0

0 0 c 0

0 0 0 −c


 (3.52)

ここまでの一連の計算は、線型代数の時間に習った行列の対角化である。1

変数w = Luについての方程式は独立で線型な移流方程式の集まりなので、これらはそれ
ぞれ 1章で習った風上差分で解ける。求まった値を変換によりu = Lwに戻せばMaxwell方
程式も解ける。

この節の教訓: 連立方程式 (システム方程式)では波の速度が行列で表されるので、行列の
固有値・固有ベクトルを計算し、成分ごとの簡単な方程式にすると良い。

3.3 Burgers方程式の復習とMaxwell方程式の風上数値流束
Burgers方程式では変数 uの値により波の位相速度が変わる。またMaxwell 方程式では成分

により位相速度が±cの値をとる。このように位相速度が一定で無い場合の風上数値流束を復
習しよう。

Burgers 方程式の場合

uj(t + ∆t) = uj(t) − ∆t

∆x
(f̃j+1/2 − f̃j−1/2) (3.53)

f̃j+1/2 =




[uj(t)]
2

2
[uj+1(t) + uj(t) > 0]

[uj+1(t)]
2

2
[uj+1(t) + uj(t) ≤ 0]

(3.54)

式 (3.54)は

f̃j+1/2 =
1

2

[
[uj+1(t)]

2 + [uj(t)]
2

2
−
∣∣∣∣uj+1 + uj

2

∣∣∣∣ (uj+1 − uj)

]
(3.55)

この結果から類推すると、対角化されたMaxwell方程式は

∂w

∂t
+ LAR

∂w

∂x
=

∂w

∂t
+

∂fw

∂x
= 0 (3.56)

fw = LAR w = Λw (3.57)

1第 2章でも同様に行列の対角化を行った。
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なので、これを風上差分化した公式は

wj(t + ∆t) = wj(t) − ∆t

∆x
(f̃w,j+1/2 − f̃w,j−1/2) (3.58)

f̃w,j+1/2 =
1

2

[
fw,j+1 + fw,j − |Λ| (wj+1 − wj)

]
(3.59)

と予想される。ここで行列 |Λ|は対角行列の絶対値なので、対角要素の絶対値をとったもの

|Λ| =




c 0 0 0

0 c 0 0

0 0 c 0

0 0 0 c


 = c (3.60)

と定義する。
元の変数で考えると

∂u

∂t
+ A

∂u

∂x
=

∂u

∂t
+

∂fu

∂x
= 0 (3.61)

fu = A u (3.62)

なので、これを風上差分化した公式は

uj(t + ∆t) = uj(t) − ∆t

∆x
(f̃u,j+1/2 − f̃w,j−1/2) (3.63)

f̃u,j+1/2 = Rf̃w,j+1/2 (3.64)

=
1

2

[
fu,j+1 + fu,j − R |Λ|L (uj+1 − uj)

]
(3.65)

式 (3.65)は流体力学で使う数値流束と形の上でそっくりとなる。

3.4 流体力学方程式の風上差分
これまでに見てきたように、風上差分の計算では波の位相速度を求める操作が欠かせない。

具体的には

1. 微分方程式を
∂u

∂t
+ A

∂u

∂x
= 0 の形に書き直し、「速度行列」Aを求める。

2. 速度行列 Aの固有値を求める。
3. 速度行列 Aの固有ベクトルを求める。
4. 固有値と固有ベクトルより数値流束を求める。

という演算が必要である。以下ではそれぞれについて説明する。

ステップ 1 速度行列を求める。
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∂u

∂t
+

∂f

∂x
= 0 (3.66)

を合成関数の微分則を使って書き換えると、

∂u

∂t
+ A

∂u

∂x
= 0 (3.67)

A =
∂f

∂u
(3.68)

(A)i,j =
∂fi

∂uj

(3.69)

が得られる。
流体力学方程式では

u =




ρ

ρv
ρv2

2
+

P

γ − 1


 =




ρ

ρv

ρE


 (3.70)

f =




ρv

ρv2 + P
ρv3

2
+

γ Pv

γ − 1


 =




ρv
(ρv)2

ρ
+ (γ − 1)

(
ρv2

2
+

P

γ − 1

)

ρv

ρ

[
1 − γ

2

(ρv)2

ρ
+ γ (ρE)

]




(3.71)

E =
v2

2
+

P

(γ − 1) ρ
(3.72)

H =
v2

2
+

γ P

(γ − 1) ρ
(3.73)

上記の変形は f をu で偏微分するため。2章でも等温の場合に同様の変形を行った。

A =




0 1 0

− 3 − γ

2
v2 (3 − γ) v γ − 1(

γ − 1

2
v2 − H

)
v H − (γ − 1) v2 γv


 (3.74)

ステップ 2 固有値を求める。
|A − λ I| = 0より、

λ1 = v + cs (3.75)

λ2 = v (3.76)

λ3 = v − cs (3.77)

cs =

√
γP

ρ
(3.78)
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ステップ 3 固有ベクトルを求める。

r1 =




1

v + cs

H + v cs


 (3.79)

r2 =




1

v
v2

2


 (3.80)

r3 =




1

v − cs

H − v cs


 (3.81)

�1 =

[
1

2

(
v2

2

γ − 1

c2
s

− u

cs

)
,

1

2

(
1

cs

− γ − 1

c2
v

)
,

γ − 1

2 c2
s

]
(3.82)

�2 =

[
1 − v2

2

γ − 1

c2
s

,
γ − 1

c2
s

v , − γ − 1

c2
s

]
(3.83)

�3 =

[
1

2

(
v2

2

γ − 1

c2
s

+
u

cs

)
,

1

2

(
1

cs

+
γ − 1

c2
v

)
,

γ − 1

2 c2
s

]
(3.84)

ここまでに見てきたように、流体力学方程式では速度行列Aが密度・速度・圧力の関数なの
で、場所によりその値が異なる。従って固有値や固有ベクトルも場所によって異なる。このた
め数値流束を計算する際に、どこの密度・速度・圧力を使って計算するのかという疑問がうま
れる。これに対して Roe (1981) は

ρ̄ =
√

ρj+1ρj (3.85)

v̄ =

√
ρj+1vj+1 +

√
ρjvj√

ρj+1 +
√

ρj

(3.86)

H̄ =

√
ρj+1Hj+1 +

√
ρjHj√

ρj+1 +
√

ρj

(3.87)

c̄2
s = (γ − 1)

(
H̄ − v̄2

2

)
(3.88)

を使って「平均量」を計算すれば良いことを見いだした。この平均の取り方を Roe 平均と呼
ぶこともある。

Roe 平均で速度や単位質量当たりのエネルギーは
√

ρで重みをとった平均。一方、密度や圧
力は 1/

√
ρで重みをとった平均。ちょっと予想外なのは平均化された音速 (c̄s)。音速は温度 (=
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圧力と密度の比)によって決まるのだが、なぜか音速 c̄sの計算に速度 vも使う。式 (3.88)を計
算すると、

c̄2
s = γ

Pj+1√
ρj+1

+
Pj√
ρj√

ρj+1 +
√

ρj

+
γ − 1

2

√
ρj+1 ρj

(
√

ρj+1 +
√

ρj)2
(vj+1 − vj)

2 (3.89)

が得られる。この式は、速度勾配があると (vj+1 �= vj)、その分だけ平均音速が上昇すること
を示している。
この Roe平均で計算したA (uj+1, uj)は任意 uj と uj+1に対して、Property Uとよばれ

る以下の 3条件、

i) (f j+1 − f j) = A (uj+1, uj) (uj+1,−uj)

ii) 固有値はすべて実数 (波の速度はすべて実数)

iii) uj+1 = ujの場合、A = ∂f/∂u

を満たす。時間の関係で省略するが、Property U を満たす平均の取り方はこれ一つに限られ
ることも証明できる。詳しくは Hirsch あるいは藤井の教科書に書かれている。

uj(t + ∆t) = uj(t) − ∆t

∆x
(f̃u,j+1/2 − f̃u,j−1/2) (3.90)

f̃u,j+1/2 = Rf̃w,j+1/2 (3.91)

=
1

2

[
fu,j+1 + fu,j − R |Λ|L (uj+1 − uj)

]
(3.92)

形式的にはMaxwell方程式の風上差分と同じであるが、波の速度行列Λ = LARは流れによ

り変化する量である。絶対値をとると

|Λ| =




|v + c| 0 0

0 |v| 0

0 0 |v − c|


 (3.93)

この節の教訓: 数値流束の計算に必要なものは、波の位相速度 (固有値 λk)と波の固有モード
(固有ベクトル rkと �k)である。これらの量は場所とともに変化するので、適切な平均量 (Roe

平均)を使う。

3.5 磁気流体力学方程式の風上差分化
流体力学方程式のところで分かったように数値流束に直接現れる量は、固有値と固有ベクト

ルである。磁気流体力学方程式では変数が増えるので計算がさらに厄介になる。ここでは計算
結果だけを述べる。固有値や固有ベクトルは、流体力学方程式の時と同様に特殊な平均量を
使って計算する。
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ベクトル形式で記述した 1次元磁気流体力学方程式

u =




ρ

ρu

ρv

ρw

By

Bz

ρE




(3.94)

f =




ρu

ρu2 + P +
By

2 + Bz
2 − Bx

2

8π

ρuv − BxBy

4π

ρuw − BxBz

4π
Byu − vBx

Bzu − wBx

ρHu − Bx (Bxu + Byv + Bzw)

4π




, (3.95)

E =
u2 + v2 + w2

2
+

P

(γ − 1) ρ
+

Bx
2 + By

2 + Bz
2

8πρ
, (3.96)

H =
u2 + v2 + w2

2
+

γP

(γ − 1) ρ
+

Bx
2 + By

2 + Bz
2

4πρ
, (3.97)

1次元の磁気流体力学方程式には、fast 波 (右向きと左向き)、slow 波 (右向きと左向き)、
Alfvén 波 (右向きと左向き)、エントロピー波の 7種類の波 (固有値・固有ベクトル) が存在す
る。流体力学で見てきたように、右向きと左向きの固有値と固有ベクトルは速度の符号が違う
だけでよく似ている。紙数を節約するために以下では次のように fast波、slow波、Alfvén波
の固有値・固有ベクトルを次のようにまとめて記述する。
固有値と (右)固有ベクトル

r1,7 = Ru±cf
, r2,6 = Ru±bx , r3,5 = Ru±cs , r4 = Ru , (3.98)

λ1,7 = ū ± cf , λ2,6 = ū ± bx , λ3,5 = ū ± cs , λ4 = ū , (3.99)

流体力学の時と同様に、これらの固有値と固有ベクトルは uj と uj+1の平均量を使って評
価する必要がある。Brio & Wu (1988) は γ = 2の場合に、Property U を満たす平均が存
在することを示した。Brio & Wu (1988) に比べて少し複雑ではあるが、現在は一般の γに対
して Property Uを満たす固有値・固有ベクトルも知られている。以下では一般の γについて
Property Uを満たす固有値・固有ベクトルを示す。2

2Property Uの条件 (i)は第 2章で習った衝撃波のランキンユゴニオ条件と関係がある。どちらも非線型性を
考慮している。
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Ru±c =




1

ū ± c

v̄ ∓ BxB̄yc

4πρ̄(c2 − bx
2)

w̄ ∓ BxB̄zc

4πρ̄(c2 − bx
2)

B̄yc
2

ρ̄(c2 − bx
2)

B̄zc
2

ρ̄(c2 − bx
2)

ū2 + v̄2 + w̄2

2
+

c2

γ − 1
± cū + χ + δb2




, (3.100)

Ru±bx =




0

0

∓B̄z sgn(Bx)

±B̄y sgn(Bx)

B̄z

√
4π

ρ̄

− B̄y

√
4π

ρ̄
∓ (B̄z v̄ − B̄yw̄) sgn(Bx)




(3.101)

Ru =




1

ū

v̄

w̄

0

0
ū2 + v̄2 + w̄2

2
+ δb2




(3.102)

χ = ∓ Bxc (B̄yv̄ + B̄zw̄)

4πρ̄ (c2 − b2
x)

+
γ − 2

γ − 1
(c2 − a2) (3.103)

δb2 =
γ − 2

γ − 1

(By, j+1 − By, j)
2 + (Bz, j+1 − Bz, j)

2

8π (
√

ρj+1 +
√

ρj)2
(3.104)

cf, s
2 =

a∗2 ±
√

a4∗ − 4a2bx
2

2
(3.105)

bx =
|Bx|√
4πρ̄

(3.106)

a∗2 = (γ − 1)
(
H̄ − ū2 + v̄2 + w̄2

2
− δb2

)
− (γ − 2)

(Bx
2 + B̄y

2 + B̄z
2

4πρ̄

)
(3.107)
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a2 = (γ − 1)
(
H̄ − ū2 + v̄2 + w̄2

2
− δb2 − Bx

2 + B̄y
2 + B̄z

2

4πρ̄

)
(3.108)

v̄ =

√
ρjvj +

√
ρj+1vj+1√

ρj +
√

ρj+1

(3.109)

w̄ =

√
ρjwj +

√
ρj+1wj+1√

ρj +
√

ρj+1

(3.110)

B̄y =

√
ρj+1By, j +

√
ρjBy, j+1√

ρj +
√

ρj+1

(3.111)

B̃y =
By, j + By, j+1

2
(3.112)

B̄z =

√
ρj+1Bz, j +

√
ρjBz, j+1√

ρj +
√

ρj+1

, (3.113)

B̃z =
Bz, j + Bz, j+1

2
(3.114)

上記の公式で (3.100)は、fast波と slow波の両方の固有ベクトルを表している。波の速度 cに
cf を代入すれば fast波の固有ベクトルが、csを代入すれば slow 波の固有ベクトルが得られる。
また csとの混同を避けるため、音速は aで表されている。
実際に磁気流体力学方程式の数値流束を計算するためには、上記の式に少し工夫を加える必

要がある。工夫が必要となるのは、固有値が等しくなる (縮退する)場合である。気をつけて上
記の式を運用しないと、固有ベクトルが独立でなくなる場合がある。この問題を回避するため
に、Ryu & Jones (1995) は変数に工夫を凝らした。上記の公式にこの工夫を加えると以下の
ようになる。

R1,7 =




αf

αf (ū ± cf)

αf v̄ ∓ αsβybx sgn (Bx)

αf w̄ ∓ αsβzbx sgn (Bx)

αsβycf

√
4π/ρ̄

αsβzcf

√
4π/ρ̄

αf

{ ū2 + v̄2 + w̄2

2
+ δb2 ± cf ū +

cf
2

γ − 1

+
γ − 2

γ − 1
(cf

2 − a2)
}
∓ αsbxsgn(Bx) (βyv̄ + βzw̄)




(3.115)
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R2,6 =




0

0

∓βz sgn(Bx)

±βy sgn(Bx)

βz

√
4π/ρ̄

−βy

√
4π/ρ̄

∓ (βz v̄ − βyw̄) sgn(Bx)




(3.116)

R3,5 =




αs

αs (ū ± cs)

αsv̄ ± αfβya sgn (Bx)

αsw̄ ± αfβza sgn (Bx)

− αf βya
2
√

4π

cf

√
ρ̄

− αf βza
2
√

4π

cf

√
ρ̄

αs

{ ū2 + v̄2 + w̄2

2
+ δb2 ± csū +

cs
2

γ − 1
+

γ − 2

γ − 1
(cs

2 − a2)
}

±αfasgn(Bx) (βyv̄ + βzw̄)




(3.117)

R4 =




1

ū

v̄

w̄

0

0
ū2 + v̄2 + w̄2

2
+ δb2




(3.118)

αf =

√
cf

2 − bx
2√

cf
2 − cs

2
(3.119)

αs =

√
cf

2 − a2√
cf

2 − cs
2

=
cf

bx

√
bx

2 − cs
2√

cf
2 − cs

2
(3.120)

βz =
B̄z√

B̄y
2 + B̄z

2
, (3.121)

βy =
B̄y√

B̄y
2 + B̄z

2
(3.122)
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平均磁場が 0の場合 (B̄y = B̄z = 0)は βy と βz は

βy = 1 and βz = 0 (3.123)

と定義される。また cf = cs = a = bxの場合、αf と αs は

αf = 1 and αs = 0 (3.124)

βy
2 + βz

2 = 1 , (3.125)

αf
2 +

bx
2

cf
2
αs

2 = 1 (3.126)

と定義される。

w2 =
1

2

[
−ρ̄ (βz∆v − βy∆w) sgn(Bx) +

√
ρ̄

4π
(βz∆By − βy∆Bz)

]
(3.127)

w6 =
1

2

[
ρ̄ (βz∆v − βy∆w) sgn(Bx) +

√
ρ̄

4π
(βz∆By − βy∆Bz)

]
(3.128)

w1 + w7 =
αf

cf
2

(
∆P +

B̃y∆By + B̃z∆Bz

4π

)

+
{ αs

a2cf

[
(γ − 1) c2

s − (γ − 2) a2
]√

4πρ̄

+ (γ − 2)
√

B̄y
2 + B̄z

2
αf

cf
2

} βy∆By + βz ∆Bz

4π
, (3.129)

w1 − w7 =
αf

cf

ρ̄∆u − αscs

cfa
sgn(Bx)ρ̄(βy∆v + βz∆w) , (3.130)

w3 + w5 =
αs

a2

(
∆P +

B̃y∆By + B̃z∆Bz

4π

)

+
{
αf

[γ − 2

cf

− (γ − 1)
cf

a2

]√
4πρ̄

+ (γ − 2)
√

B̄y
2 + B̄2

z

αs

a2

} βy∆By + βz ∆Bz

4π
, (3.131)

w3 − w5 =
αsbx

cfa
ρ̄∆u +

αf

a
sgn(Bx)ρ̄(βy∆v + βz∆w) , (3.132)

w4 = ρj+1 − ρj − αCf (w1 + w7) − αs (w3 + w5) , (3.133)

∆P = Pj+1 − Pj , (3.134)

∆By = By, j+1 − By, j , (3.135)

∆Bz = Bz, j+1 − Bz, j . (3.136)
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R4 =




1

ū

v̄

w̄

0

0
ū2 + v̄2 + w̄2

2
+ δb2 + ε




, (3.137)

and

ε =
ρj+1ej − ρjej − (Pj+1 − Pj)/(γ − 1)

w1

. (3.138)

3.6 さらに勉強する人へ
時間が限られているので、講義内容は基本的な概念に絞った。そのため実用的なコードを作

成するのに必要な知識のいくつかを割愛せざるを得なかった。ここでは割愛した中でも重要な
項目と、それについての参考書を示す。

1. 膨張衝撃波 (expansion shock)の回避

ポイント波の位相速度 λkが、λk,j < 0 かつ λk,j+1 > 0である時に、Roeの方法は不自然
な解 (expansion shock)を生むことがある。回避法は良く知られている。

参考書 Hirsch の教科書 pp. 467–469

2. 数値流束の 2次精度化

ポイントここで講義した風上差分法は時間空間ともに 1次精度であるが、これ時間空間
ともに 2次精度に拡張して使うのが普通である。よく用いられる方法としてMUSCL

法がある。

参考書 藤井の教科書 第 3章

3. Godunov の定理とTVD条件

ポイント高次精度の数値流束を使うと、1次精度風上差分では回避された数値振動が現
れやすくなる。Godunov の定理はこれを回避するための基礎理論として有名。また
TVD条件は数値振動が起こさないための十分条件として有名。簡単な解説は 1章に
掲載されている。

参考書 藤井の教科書 第 3章

4. 流速制限関数 (flux limiter)

ポイント MUSCL法で使われる。流速制限関数が必要であることはGodunov の定理より
導かれる。1章で紹介されたminmod関数はその 1例。
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参考書 藤井の教科書 第 3章

5. MUSCL法の (磁気)流体力学方程式への適用

ポイントシステム方程式にMUSCLを適用する手順は予想外に面倒である。特に磁気流
体力学の場合は工夫が必要である。具体的な手順の例はFukuda & Hanawa (2000)に
載っている。

6. Property U

ポイント Property Uが何故必要なのか。またRoeの平均はどのようにして導かれたのか。
原理的な理解のために学習することは益。

参考書 Hirsch の教科書 pp. 463–465

7. 円筒座標および極座標での計算

ポイント 2次元シミュレーションでは円筒座標や極座標が役に立つ場合が多い。これらの
座標を用いるときは少し工夫が必要である。

8. 一般的な状態方程式への拡張

ポイントこの講義や普通の教科書で扱うのは理想的な状態方程式だけである。しかし一
般的な状態方程式の場合にも風上差分を拡張することができる。

参考書 Nobuta & Hanawa (1999)
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