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流れのシミュレーションを行う場合、流れ場の形が単純であれば直交格子を用
いて計算ができる。しかし、実際に解きたい流れ場の多くは大変複雑である。例
えば、飛翔体周りの流れ場を解くためには、計算格子を複雑な物体形状に沿って
分布させることが要求される。また、物体形状が単純な場合においても、物体近
傍などに発達する境界層を解像するためには計算格子を境界層周辺に局所的に集
中させることが必要となる。
非一様な格子分布の利用は、数値流体力学の分野では ��年以上にわたり盛んに

研究が行われてきた。しかし、粒子・ハイブリッドモデルにおいては現在でも等
間隔直交格子を用いることが一般的であり、今後非一様な計算格子を用いた研究
が急速に発展していくことが予想される。
本稿では、非一様な空間格子幅 ���� 分布を粒子・ハイブリッドモデルで利用す

るための手法を紹介する。また、非一様格子上での計算を効率良く行うために必
要となる、非一様時間ステップ幅 ����の利用や粒子数の動的変更を行う手法も併
せて紹介する。

� 非一様空間格子幅

��� 格子の種類

	
 非構造格子 ���

・格子点の並びに規則性をもたない

・格子の自由度が高い

・有限要素法や有限体積法で使用される

・三角形（三次元では四面体）が最も多く用いられるが、四角形（三次元で
は六面体）やその他のセル形状やその混在もしばしば用いられる

(a1) 非構造格子(三角) (b1) 直交格子 (b2) 境界適合格子(a2) 非構造格子(四角)

図 	 格子の種類

	



�
 構造格子 ���

・格子点の並びに規則性をもつ

・差分法や有限体積法で使用される

� 境界適合格子

図 � 境界適合格子

格子に柔軟性はあるが、特定の領域に格子点を極端に集中させるのは困
難な場合が多い。格子歪みは ��度以下が望ましい。

� マルチブロック

� 重なり格子



 非構造格子と構造格子の組み合わせ

・三角形（三次元では四面体）セルを用いると流束計算が多くなる。
�� 高い空間分解能が必要となる物体近傍にのみ構造格子（またはプリズ

ム形状の非構造格子）を用いる

�
 解適合格子

・流れの計算結果をもとに格子点を移動、または格子点を追加・削除

�



��� 粒子コードへの適用

� 非構造格子

� 格子形状が三角形（四面体）�� �
�
� ������������ �� ��
 �	����

プログラミングがやや複雑
物体形状が複雑な場合に使用（飛翔体環境など）

� 格子形状が四角形（六面体）�� �
�
� ������ ��� ���� ��� ����	�

三次元で六面体を用いた場合は、!�レベルの格子では格子体積が
	�"�に。

�� 隣接するグリッド間内の粒子数の変化が激しい。
粒子分割・合体 ����	
�� 
�が必要となる場合が多い。

� 境界適合格子

プログラミングが比較的容易で汎用性に富む
物体形状が相当複雑でない限り十分

� 解適合格子 �� �
�
� #�$���% ������

��� 境界適合格子 ＋ 粒子コード

� 境界適合格子における変換式 �&$$����' 	�

� 粒子コードに境界適合格子を適用するためには、多数個の粒子量（ラグラン
ジュ量）と非一様な格子点上の場の量（オイラー量）を効率的に結びつける
方法が必要である（図 
）。

例えば、粒子量 ���� ���からソース項 �����を格子点上でいったん求めれば、
場の量に関する方程式については &$$����' 	 の変換式がそのまま使用で
きる。
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図 
 粒子量と場の量のやりとり






� 境界適合格子 ＋ 粒子コード の計算手順を具体的に書くと、

	
 粒子量 ���� ���を格子点上に集めてソース項 �����を計算する

�
 格子点上で場の量 �����を進める（計算空間� &$$����' 	）



 格子点上の場の量 �����から、粒子に働く力� �を計算する

�
 粒子量 ���� ���を進める（物理空間）

である。下線部分の粒子量と格子点上の場の量とのやりとりを行う方法は幾つ
かあるが、&$$����' �に(�)��*���� �	����による+,-法の �*��./��������

������ を応用した「補間法」「粒子局在化法」を記した。この手法を用いる
ことにより、境界適合格子の粒子コードへの適用が容易に行える。

適用例

-3 -2 -1 0 1 2 3
X

-3

-2

-1

0

1

2

3

Y

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6

[cm-3]

SW

N (total) &  Flow vector: 150 km/s

図 � 適用例 	 図 � 適用例 �

例 	
 デバイス内での電子軌道計算 �(�)��*����� 	����

例 �
 金星電磁圏のハイブリッドシミュレーション ���*��� �� ��
� �����

・イオン慣性長の分布をもとに格子分布を決定
・球面上への準一様な格子分布

�



� 粒子分割・合体法
非一様格子を用いる際には、粒子数の動的変更が必要となる場合がある

図 0 粒子分割

方法 ��
�
� #�$���� ��� 1*�234��� �	�����

� 粒子分割

同一速度の２粒子に分割。

ソース項が変化しないように粒子を分割する。（例えば図 5の��から等距離
の ��� ��に、電荷と質量を二等分した粒子を置く）

� 粒子合体

運動量保存とエネルギー保存を共に満たしたまま合体することはほぼ不可能。

Æ 6
��� � ���

����! ����
� 	のものを合体。

（他にも３粒子を合体させて２粒子を生成する方法 ������� ��� ���� ����

���	� などもある）

図 5 分割粒子の配置 表 	 合体により粒子数を 	7�に
した分布のテスト

問題点
・合体は近似でしかない �表 	�

・分割において、細かいグリッドでの速度分布に偏りが出ないようにする為
には、上流の粗いグリッド内にも十分な数の粒子が必要

・分割・合体によって系の発展が変わる

�




 非一様時間ステップ幅
時間ステップ幅��は、対象とするプラズマ現象を解くのに十分小さくなければ

ならない。例えば一般的な陽解法ハイブリッドコードにおいては、

�� � ��� 8��� 6 ���	��
��

�� � ����� （クーラン条件）

を共に満たす必要がある。このことから、

	
 背景場 ���� ��など�が空間的に大きく変化する

�
 グリッド幅��が空間的に大きく変化する

などの場合は、小さな��が必要な領域でのみ小さな��を用いることによって、
計算効率を大幅に改善することが期待できる。

�� 背景場が空間変化する場合

例
 ( �	�"��

・地球磁気圏グローバルシミュレーションでは内部磁気圏領域で��を小さくし
なければならない �強い固有磁場のために8��� � 	���が小さくなる�

・地球中心から 	
�地点でのアルベン速度は �� � 5�����
�
�����

図 " 二領域で異なる��を用いたスキーム

問題点
小さな時間ステップ（��� 6 ����が �ステップ）の間に速いグリッド側から遅
いグリッド側に伝搬していく短周期擾乱
�� 有限の伝搬速度の双曲型システムの場合、緩衝層（通常２～３グリッド）

で対処

0



slow fast

∆t’= ∆t/n

buffer zone

∆t

Buffer zone 内の場・粒子の量を小さ
な時間ステップ幅で進め、境界から
流入してきたフラックス量をもとに、
遅いグリッド側の場を補正する

perturbation

∆t’

∆t

図 � 緩衝層を用いた遅い格子上の場の補正

�� グリッド幅が空間変化する場合

例
 #�$���% ������

図 	� 非一様格子幅と非一様時間ステップ幅の併用

格子幅は��� 6 �����
���（�は格子分割のレベル）で与えられる。格子幅が小

さなところでは時間ステップ幅も小さくする（��� 6 �����
���）。緩衝層では格

子幅・時間ステップ幅ともに元より小さいものを用いるので、一時的に粒子分割
を行った上で小さな時間ステップ幅で進め、遅いグリッド側の場の量を補正する。
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� 衝突効果
惑星電離圏領域での現象やデバイス内でのプラズマ現象などの様々な現象にお

いて、プラズマ粒子が中性気体等と衝突する効果が重要な役割を果たすことがあ
る（�
�
� 図 �）。従来、数値シミュレーションにおいて衝突の効果は流体モデルを
用いて調べられてきた。しかし、複雑な物理過程や反応過程の結果、プラズマ粒
子の速度分布は非マクスウェル分布となり得るので、そのような場合は自己矛盾
のない粒子モデルを用いて調べる必要がある。この章では粒子モデルに衝突効果
を組み込む手法について紹介する。

��� ��� ＋ モンテカルロ衝突

ここでは 9����� ��� � *���*� �	���� に基づいて粒子コードに衝突効果を組み
込む手法の一例（+,- ＋ モンテカルロ衝突）をみていく。図 		のフローチャート
にあるように、衝突効果はモンテカルロ法を用いることによって+,-コードに容
易に組み込むことができる。ここでは 	タイムステップ ����ごとに衝突粒子を決
定する方式を採用している。

Integration of equations
of motion, moving particles

Fi            vi’            xi

     Particle loss/gain
     at the boundaries
(emission, absorption, etc.)

Integration of field
equations on grid

(ρ, J)j       (E, B)j

      Weighting

(x, v)i        (ρ, J)j

     Weighting

(E, B)j         Fi

Monte-Carlo Collisions

    vi’             vi
∆t

図 		 +,- ＋ モンテカルロ衝突のフローチャート

�番目の粒子の衝突周波数は、

�� 6 ���	�� �	�

で与えられる。ここに

�	 ���� 6 ������ ! � � �! �
 ���� ���

で、 �� は �型の衝突の衝突断面積 �	 � � � ��、�� 6
�

�
	��� は粒子 �の運動エネ

ルギー、��は衝突対象の数密度である。この衝突周波数を用いて、タイムステッ
プ��間の粒子 �の衝突確率は、

�� 6 	� �'$������� �
�

"



で与えられる。
モンテカルロ衝突のアルゴリズムは、基本的には以下の手順で成り立っている

（計算効率を考慮したアルゴリズムは ����� 参照）。

	
 全ての粒子に対して式 �	�より衝突周波数 ��を求める（個々の粒子の速度、
エネルギーの値が必要）

�
 全ての粒子に対して式 �
�より��間の衝突確率 ��を計算する



 全ての粒子に対して ��� 	�の一様乱数を発生させ、その乱数の値が��以下で
あるならば、その粒子を衝突粒子とする

�
 

で衝突が決定した粒子に対して一様乱数を発生させ、衝突の型 ��:$� 	� �:$�

�� 


� �* �:$� ��を決定する（図 	
参照）

�
 �
で衝突の型が決定した粒子に対して散乱角や衝突後のエネルギーの計算な
どを行う

	
の衝突周波数の計算や �
の衝突の処理などは、衝突粒子と衝突対象（電子、イ
オン、中性）との個々の衝突過程の特性に応じて計算方法を決定しなければなら
ない。そこで以下で一例としてアルゴンイオンとアルゴン原子の衝突をみる。

例（���と��の衝突）

�� 衝突周波数の計算の例

アルゴン原子の熱速度がイオンのものに比べて無視できるほど小さい場合は、衝
突周波数は個々のイオンの速度 ��とエネルギー�� 6

�

�
	��� を用いて図 	�と式 �	�

から求めることができる。
しかし、アルゴン原子の熱速度とアルゴンイオンの速度が同程度の場合は、ア

ルゴン原子の速度分布の情報（例えばマクスウェル速度分布など）が必要となる。
まず、アルゴン原子の速度分布から無作為に衝突対象となるアルゴン原子を一つ
選ぶ。そしてその衝突対象原子の系でみた �番目のイオンの速度から、衝突断面積
を図 	�により求め、衝突周波数を式 �	�により求める。この手順を全てのイオン
について繰り返す。

�� 衝突の処理の例

衝突の型が図 	�の散乱 �)2����*����の場合は、剛体球衝突であると仮定し衝突
時のエネルギー損失率を

���� 6
�	�	�

�	� !	���
�	� 2�);� ���

で計算する。ここに;は質量中心系での散乱角であり、散乱は等方一様であると
仮定する。もし、	
で衝突対象原子の系に移していたならば、衝突処理後に元の
系に戻す。

�



図 	� &*�.&*衝突断面積

衝突の型が電荷交換 �2��*�� �'2������の場合は、アルゴン原子からアルゴンイ
オンに電子が移動するとする。生成されたアルゴンイオンの速度は、衝突対象原
子の系で �、すなわち衝突対象原子の入射速度とする。

��� テクニカルな話

����� 空衝突

モンテカルロ衝突法は、直観的で、+,-コードに組み込むことは容易であるが、
そのままでは計算量が膨大になってしまう（���の手順において、全ての粒子につ
いて 	
� �
� 

を計算しなければならない）。そこで、空衝突 �� �� 2����)����を導入
することにより計算の効率化を行う。

図 	
 空衝突の導入

	�



	
 図 	
にあるように、エネルギーに関して一定の値をとる仮の衝突周波数 � � 6

��'����	 ��を求める（空衝突周波数 ���

 6 � �� ���!��! � � �!�
�を導入）

�
 ���

 6 	� �'$��� ���� を計算する



 全ての粒子に対して ��� 	�の一様乱数を発生させ、その乱数の値が ���

以下
であるならば、その粒子を仮の衝突粒子とする

�
 

で仮に衝突が決定した粒子に対して一様乱数を発生させ、図 	
を用いて
衝突の型 ��:$� 	� �:$� �� 


� �:$� � � �* � ���を決定する

�
 �
で衝突の型が決定した粒子に対して散乱角や衝突後のエネルギーの計算な
どを行う

このように空衝突を導入することによって、全ての粒子に対する計算は 

のみと
なり、�
� �
の計算は� 	 ���

個の粒子について計算するだけでよくなる。通常
���

は 	���のオーダーであるので ������参照� 計算量の大幅な節約ができる。

����� ��の制約

モンテカルロ衝突法では、タイムステップ��の間にそれぞれの粒子についての
衝突を 	回づつしか処理できない。しかし、有限の��を用いる限りは、	タイム
ステップの間に複数回の衝突が含まれうる。複数回衝突による衝突のミスを減ら
すためには��を十分小さくしなければならない。
ある粒子の��当りの衝突ミス回数は、

� �
��
���

� �
� 6

� �
�

	� ��
���

であるので、衝突ミスの回数を 	<以下にするには�� � ��	とする必要がある。空
衝突を用いる場合は、���

 � ��	 すなわち�� � ��	�� � とすればよい。

		



������
� �

境界適合格子での座標変換における基本式

簡単の為に二次元場で、�� �は時間変化しない場合を考える。��� �� �� で定義さ
れる物理空間から計算空間 ��� �� �� への写像関係式は、���

��
� 6 �

� 6 ���� ��

� 6 ���� ��

�0�

と書ける。この変換は図 �にあるように、計算空間では�� 6 �� 6 	 となる直交
格子になるように選ぶ。

この変換はチェーン則より、�
�	

�
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�
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�
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�� �5�

また、式 �5�の ��� �� ��を ��� �� ��と入れ替えて逆変換を求めると、
�
�	

�
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�
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�
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�� �"�

ここで、

��� 6 ����� � ����� ���

は変換のヤコビ行列式である。式 �5�� �"�を比較することにより、

�� 6 ���� �� 6 ����

�� 6 ����� �� 6 ��� �	��

というメトリック関係式が得られる。

つぎに、次の形の方程式を考える。

��

��
!

��

��
!

��

��
6 � �		�

この方程式は、式 �5�のチェーン則より、

��

��
! ��

��

��
! ��

��
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! ��

��

��
! ��

��

��
6 � �	��
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と変換される。
ここで、式 �	��のメトリックを用いると、式 �	��は、

��

��
! ���

��

��
� ���

��

��
� ���

��

��
! ���

��

��
6 � �	
�

となる。
例えば点 ��� ��での ��の差分式は

������� 6



������ � ������
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������ � ������

�

�
�	��

などで与えられるので、このように物理空間上の格子点の座標 ��� ��からメトリッ
クを数値的に評価してやると、座標変換後の方程式 �	��を ��� ��の直交格子上で容
易に解くことができる（実際にメトリックを評価する際には、有限体積法で行う
ようにコントロールボリュームの幾何学的関係から評価すべきであり注意が必要
である）。変換式の詳細および格子生成の方法については ����$)�� �� ��
 �	�"��

や藤井 �	����を参照されたい。

������
� �

境界適合格子を���コードに適用するための手法

�� 「補間法」（補間係数の求め方）

通常の等間隔直交格子での �*��./�������� ������では、粒子に働く場は格子点
上の場����� ������� ������� ��������より、
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! �	� ����������� ! ������������

で与えられる（図 	�）。
今、境界適合格子上の任意の四辺形�を単位区間 ,� 6 ��� 	�	 ��� 	�に変換する

際に、線形関数が保たれているとして �*��./�������� ������を適用すると、補間
係数 ��� ��は、

�� 6
�� ! ��� ! 
����

��������� � 	
�（��������� 
6 	 のとき）

6
��

	 ! ������������ � 	�
� （��������� 6 	 のとき）

�� 6
��

	 ! ������������ � 	�

	




と求められる。ここで、
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である。
実際の計算では、��������� � 	を避けるためにニュートン法を用いて、
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という繰り返し演算を行う。
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図 	� 四辺形�の単位区間 ,� 6 ��� 	�	 ��� 	�への変換
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�� 「粒子局在化法」（粒子が所属するセルを同定する手法）

非一様格子上では、粒子の位置情報 � ��� ��のみから、その粒子が所属するセル
を割り出すのは困難である。そこで、以下の )��$ 	 � 0から成る粒子追跡アルゴ
リズムを用いて、粒子が所属するセルの同定を行う。この粒子追跡アルゴリズム
は、「補間法」の ��� ��を用い、粒子が所属するセル番号 ��� ��を効率的に求める
アルゴリズムである。

注） ここでは、セル ��� ��は格子点 ����� ������� ������� �������� に囲まれた領域と
している。

)��$ 	= 仮のセル番号 ��� ��に粒子が 	ステップ前にいたセルのも
の ���� ���を代入する

)��$ �= セル ��� ��で式 �	��を実行し、補間係数 ���� �
�
�を計算す

る

)��$ 
= セル番号 ��� ��に補間係数を加える（� ! ���� � ! ���）

)��$ �= ��� �� 6 �,>���! ����� ,>��� ! �����とする

)��$ �= セル ��� ��で式 �	��� �	0�を用いて、��� ��を求める

)��$ 0= ���� ��� 
 ,� なら ?
�
。違うなら )��$ 
に戻り、)��$


 � 0を繰り返す。

)��$ 0 の条件判断を行わず、)��$ 
 � �を � � �回繰り返す場合もある（通常 
回
の繰り返しで充分である）。
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