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プラズマのシミュレーションは一般に、偏微分方程式の初期値境界値問題を数値的に解く

ことに相当する。物理的に正しいシミュレーションを行うことができるどうかは、これら

の初期値と境界条件によって決まるといっても過言ではない。本章では、プラズマ粒子シ

ミュレーションにおいて使用される境界条件とその物理的意味について述べる。 
 
１．概要 
シミュレーションでは、無限の物理領域の一部を計算機上に再現するためになんらかの仮

定を必要とする。例えば、一様無限の空間内に周期性のみを持つ物理現象を再現する場合

には、周期境界条件を使用することができる。あるいは、空間内に局所的に擾乱の発生領

域が存在し、その影響が空間的に拡散または放射されるような現象をシミュレートする場

合には、擾乱の発生領域を取り囲むように擾乱の吸収領域を設ける方法が有効である。ま

た、宇宙飛翔体等をシミュレーション空間内にモデル化するためには、導体または誘電体

をシステムないに置く必要がある。本節では、これらの境界条件を与える手法について詳

述する。 
 
２．周期境界条件 
一様無限の空間を再現する手法として最も一般的な手法が、周期境界条件である。システ

ム長 Lの１次元電磁粒子コードの場合、全ての物理量 F(x)に対して、F(x=L)=F(0)が成り立
つことを意味する。これは、左右のシステム境界を越えて伝播する波動は、反対側のシス

テム境界からシステム内に伝播することを意味している。このことを電位Φにあてはめる

と、システムの両端における電位Φは同じでなければならず、ガウスの発散定理からシス

テム内の全電荷は零でなければならないことになる。さらにシミュレーションの全ての時

間ステップにおいてこの条件が満たされるために、ひとつの境界を越えたプラズマ粒子は、

そのまま速度を変えることなく反対側の境界から注入されなければならない。このような

周期境界条件を与えることによって、実空間においてシステム長 L を周期とする現象をシ
ミュレーション空間に再現することが可能になる。この周期性によってポアソン方程式の

解法として高速な FFT法が有効である。 
 
３．拘束プラズマ境界条件 
実験室プラズマ等の有限空間に閉じ込められたプラズマ環境を再現するためには、

F(x=L)≠ F(X=0)である拘束プラズマ境界条件を使用する必要がある。ここで紹介する拘束



プラズマ境界条件は、シミュレーション空間以外の領域はプラズマの存在しない自由空間

である状況に似ている。つまり、放射電磁波が境界に達するとシステムには戻らず、シミ

ュレーション空間から取り除かれ、外部からレーザー等の電磁波を入射することも可能と

なる。シミュレーション空間外(x<0, L<x)の領域では静電波は存在しないため、Ex(x)=0と
なる。このようなシステムでポアソン方程式を解くためには FFT法をそのまま使用するこ
とはできないが、少々工夫をすることで FFT法と同程度の計算量でポアソン方程式を解く
ことができる。非周期的なシステムに対して FFT 法を適用するためには、電荷密度ρが、

)0()( === xLx ρρ を仮定する必要がある。非周期的でかつ電荷中性なシステムは 
)0(0)( ==== xLx ρρ     （１） 

を仮定することによって実現できる。この仮定によって、ポアソン方程式 
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は周期的な特解 pφ を持つことができる。この特解 pφ に bxa +=φ なる解を加えることによ

って、非周期的な解をえることができる。ここで、ｂは境界条件から求められ 
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さらに中心差分の原理と周期性Φp(x+L)=Φp(x)を利用すると 
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このような条件 )0(0)( ==== xLx ρρ を実現するためには、システムの両端のグリッド

に荷電粒子が入らないようにする必要がある。システム両端における粒子の取り扱いとし

ては、 xx ∆= と xLx ∆−= において粒子を反射する壁があるように取り扱うことによって

実現できる。 

 



図１．拘束プラズマ境界条件を扱う場合の境界近傍での粒子の取り扱い 
４．完全導体境界条件 
完全導体表面では、電界ベクトルの接線成分がゼロになるため、 )0(0 == jx と

)( xx NjLx == における境界条件は次のように書くことができる。ここで、jおよび kは x,y
方向のグリッドの添え字である。 
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Ez成分の境界条件は（８）式のような平均操作を行うことにより２次の精度を持つことが
できる。境界面上において、Ey, Ez 成分が常にゼロであることをマックスウェル方程式の
磁界成分の時間変化の式に適用すると 
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が得られる。この条件は方程式を閉じるためには必要ではないが、導体境界面上において

初期値として与えた磁場成分が後の時間ステップにおいて保存されるということを示して

いるという意味で重要である。 

 

図２．導体境界条件を使用する場合の境界(x=0)近傍のグリッド配置 
 



 
６．開放境界条件 
無限に広がる空間をシミュレーション空間に再現する方法として必要な境界条件が開放境

界条件である。この条件でもっとも重要なのは、実際にシミュレーション空間の外に格子

点が存在しないにもかかわらず、あたかも無限遠まで続いているかのように“みせかける”

必要があるという点にある。つまり、シミュレーション空間内で発生した静電的、電磁的

波動は外部に向かって伝播するが、これらの波動はシミュレーション空間外の無限遠に伝

播し、シミュレーション空間内にはもどってこないように見せかける必要がある。これを

実現するためには、大きくわけると二つの方法がある。ひとつは、外向きの波動を数値的

に設けた吸収領域において減衰させる方法である。この方法は、電波無響室の原理と同様

で、有効な方法であるが計算量が増加することが欠点である。二つ目の方法は、自由空間

と同じインピーダンスを持つ媒質を境界面上に置く方法である。この方法は、計算量の増

加はわずかですむ反面、プラズマ波のような自由空間と異なる屈折率を持った媒質中を伝

播する波動に対しては適用が困難である。この説では、幅広い適用が可能な吸収境界条件

について述べることにする。 
 
吸収境界条件の設定法はいくつかあるが、基本となる考え方は以下のファラデーの法則に

磁流項を加える方法である。 
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ここで、 BxJ mm )(σ= であり、仮想的に磁気単極子の流れを作ることに相当する。このよう

な操作と同様の手法としては、１以下の定数を磁場成分に毎ステップ乗じることによって

も可能である。 
 
マスキング法は、電界、磁界などの物理量を直接的に減衰させる方法である。使用する減

衰係数 )(xfM の空間分布は図５に示すように、xに関して２次関数で与えると比較的効率的
に減衰できることがわかっている。 

)()()( xExfxE M→     （１３） 
)()()( xExfxE M→     （１４） 

ここに、 )(xfM は 
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となる減衰関数である。この手法に改良を加えた方法なども開発されている。 
 



さらに純粋に横伝播の電磁波に対してのみ吸収効果を持つ方法として、電場の回転から電

流成分を求める方法が使用される。 
])([ ExMcJ ×∇×−∇=×∇= α     （１２） 

この方法は、静電波成分にまったく影響せずに、電磁波成分のみを減衰させることができ

る点において、興味深い方法であるといえる。 
 
いづれの方法においても、減衰させる波の波長と同程度の長さの減衰領域がシステムに必

要となる。十分な減衰を得るためには、シミュレーション空間の１方向のみを吸収境界と

する場合でも、システム全体の半分、2方向を吸収境界とした場合はシステム全体のおよそ
1/4を吸収領域に設定する必要があり、計算量が非常に大きくなるが、現実的なシミュレー
ションを行うためには、現段階ではもっとも実用的な方法といえる。 
 

 
図３．２次元のシミュレーション空間の x<0,x>Lxの領域に吸収境界を取り付け、y方向は
周期境界を設定した例。 



 
図４．吸収境界を物理領域の両側に設け、この領域では電界、磁界を減衰させることによ

って反射を抑える。 
 
６．非構造格子電磁粒子コード 
以上のような境界条件を組み合わせることによって、宇宙空間を飛翔する衛星などの飛翔

体環境を模擬することも可能となる。飛翔体などの複雑な形状をシミュレーションのモデ

ルとして取り入れるためには、直行格子によって空間を離散化するのみでは不十分で、構

造格子あるいは非構造格子を使った空間格子が必要となる。非構造格子電磁粒子コードで

は、空間を三角要素に分割して電磁界の離散化を行う。図５は、一つの三角要素上におい

て離散化された電界、磁界の配置を示したずである。電界、磁界の XY面内の成分は、三角
要素の辺上で定義され、Z成分は三角要素の重心で定義されている。これらの空間格子はシ
ミュレーションに適した Delauney-Voronoi Meshを形成する。 
 
この離散化により、 zE 成分の時間発展を計算するために必要な B×∇ は以下のようにして

計算できる。 
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同様に、 xyB 成分の時間発展は隣り合う三角形要素で定義された zE 成分の差分をとること
によって計算することができる。 



 
図５．三角形要素上における電界、磁界の離散化。 
 
図６(a)は、非構造格子によってシャトル型飛翔体近傍の電磁環境をモデル化した例である。
(b)は電磁波の伝播の様子をシミュレートした例で、ほぼ任意の形状の飛翔体環境に適用す
ることが可能となる。図７は、３次元空間を４面体要素によって離散化した例である。飛

翔体の表面物性に合わせて、導体境界条件、誘電体境界条件、吸収境界条件を組み合わせ

ることにより、このような宇宙飛翔体環境のシミュレーションが実用になりつつある。 
(a)    (b) 

  
図６．２次元のシミュレーション空間に導体境界条件を内部境界として使用して飛翔体を

モデル化(a)を行い、電磁波の伝播実験を行った例(b) 



 
図７．３次元の飛翔体環境シミュレーションコードの例。４面体によってシミュレーショ

ン空間を離散化をおこなっている。 
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