
CIP法入門

「天体とスペースプラズマのシミュレーションサマースクール」
2002年 9月 11日-9月 15日

場所：名古屋大学情報メディア教育センター

1 CIP法の基礎概念

双曲型の微分方程式を解く数値計算手法は、差分法だけでもこれまで様々

な手法が提案されてきたが [1]、Yabeらによって提案された CIP(Cubic In-
terpolated Profile[2][3] 法も高次精度差分法の一つであり、これまで流体力学
を始め様々な分野で応用され、成果を上げている。本文ではこの CIP法の導
入とその応用、最後に最近提案された保存保証型 CIP法について触れる事に
する。関数 f(x, t)に対する次の微分方程式を考える。

∂f

∂t
+ u

∂f

∂x
= 0 (1)

例えば uが一定値の場合、この方程式の解析解は良く知られている様に次

式で表される。

f(x, t) = f(x − ut, 0) (2)

この解は初期条件のプロファイルが速度 uで平行移動する事を意味している。

（図 1)
この方程式を差分法で解く時は、格子間を補間関数（多項式）で近似する

事から始める。

実際の系では、速度 uは時間的・空間的に一定値ではなく変化する事もあ

るが、短い時間 ∆t内であれば各格子点 xi 上の速度 ui はそれぞれ一定値と

みなせる。よって、式 (2)を用いて

f(xi, t + ∆t) ≈ f(xi − ui∆t, t) (3)
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図 1: 関数の平行移動

としてよい。つまり、ある時刻 tにおける格子点 xi上の物理量が分かってい

れば∆t秒後の物理量は式 (3)で求まる事になる。
最も簡単な例は 2点間を 1次関数で補間する「1次風上差分法」である。し

かしこの手法の場合、プロファイルが移動するに従って解が緩やかになってし

まう（図 2：数値拡散）他にも 3点を用いて 2次関数で補間する「Lax-Wendroff
法」など様々な手法があるが、数値拡散・位相誤差による数値振動等が見ら

れる事がある。
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図 2: １次風上の例　 (a)初期条件（実線）を u∆t動かす（点線）。(b)正し
い解（点線）と数値計算上の解（実線）。

　 CIP法は、格子 2点間 [i, i + 1]で 3次補間関数 F (x)を作る。この手法
の大きな特徴として、従来の差分法は値のみを用いて格子点間を多項式で補

間するが、CIP法は格子点上の微分値も用いる。

F (X) = aX3 + bX2 + cX + d　 X = x − xi (4)

補間関数の係数は条件「関数の値と微分値が格子点上で連続」という事を要
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請すると (速度 u < 0とする）

F (0) = fn
i , F (∆x) = fn

i+1, ∂xF (0) = ∂xfn
i , ∂xF (∆x) = ∂xfn

i+1 (5)

となる。式 (5)から、3次関数の係数 a, b, c, dは次の様に求まる。

a =
∂xfn

i + ∂xfn
i+1

∆x2
+

2(fn
i − fn

i+1)
∆x3

(6)

b =
3(fn

i+1 − fn
i )

∆x2
− 2(∂xfn

i + ∂xfn
i+1)

∆x
(7)

c = ∂xfn
i (8)

d = fn
i (9)

ここで nは nステップ目における値もしくは微分値という事を表している。

速度が正の場合は i + 1 → i − 1,　∆x → −∆xと変更するだけでよい。

CIP法では値と共に微分値も時間発展させなくてはならないが、速度 uが

一定値の場合は式 (1)を空間微分すると

∂(∂xf)
∂t

+ u
∂(∂xf)

∂x
= 0 (10)

となり、微分値は値と全く同じ方程式を満たす事が分かる。よって、∆t秒後

(n + 1ステップ目)における値と微分値は次の様に求める事ができる。

fn+1
i = F (xi − u∆t) = aξ3 + bξ2 + ∂xfnξ + fn

i (11)

∂xfn+1
i =

dF (xi − u∆t)
dx

= 3aξ2 + 2bξ + ∂xfn (12)

ここで ξ = −u∆tである。初期条件を与えれば式 (11),(12)から時間発展を
求める事ができる。

矩形波が速度一定で移流する計算例を載せる。比較の為、1次風上差分法
と Lax-Wendroff法の計算結果も載せた (図 3)。風上差分法は数値拡散が非常
に大きい為、時間発展すると大きく崩れてしまう。また、Lax-Wendroff法は
数値振動が非常に大きい。　それに対し、CIP法は矩形が殆ど崩れる事がな
く、解析解に近い形状を保っている事が分かる。
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図 3: 矩形波の移流.u = 1,∆x = 1,∆t = 0.2,600ステップ計算した結果. (a)
初期条件、(b)1次風上差分、(c)Lax-Wendroff、(d)CIP.実線が解析解、白丸
が数値解.
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2 非線形方程式への応用

次の様な方程式を考える。

∂f

∂t
+

∂(uf)
∂x

= g (13)

これは速度が空間 ·時間依存し、右辺 gも 0ではない (f, x, tの関数)。この様
な場合、CIP法では「移流相」「非移流相」と分ける事を行なう。式 (13)を
変形すると

∂f

∂t
+ u

∂f

∂x
= g − f

∂u

∂x
≡ G (14)

となり、また、式 (14)を空間微分すると

∂(∂xf)
∂t

+ u
∂(∂xf)

∂x
= ∂xG − ∂f

∂x

∂u

∂x
(15)

式 (14),(15)の左辺は先述の移流部分であるが、ここに右辺の項の効果を加
える。

◎ 移流相
∂f

∂t
+ u

∂f

∂x
= 0 (16)

∂(∂xf)
∂t

+ u
∂(∂xf)

∂x
= 0 (17)

　

◎ 非移流相
∂f

∂t
= G (18)

∂(∂xf)
∂t

= ∂xG − ∂f

∂x

∂u

∂x
(19)

計算手順はまず移流相をCIP法で解いて (fn, ∂xfn) → (f∗, ∂xf∗)と中間の
値を求める。（式 (11),(12)で (fn+1, ∂xfn+1)ではなく、(f∗, ∂xf∗)とする。）
次にその中間値を用いて、非移流相で単純な時間前進差分・空間中心差分

により (f∗, ∂xf∗) → (fn+1, ∂xfn+1)を求め、次ステップの値とする。具体的
な計算については次節で述べる。
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2.1 非移流相の計算法

移流計算については先述したので、ここでは非移流計算について述べる。

式 (18)は差分化すると

fn+1
i = f∗

i + Gi∆t (20)

となる。（今後、上添字 ∗は移流相計算後の値を意味するものとする。）次に
式 (19)は差分化すると下式になる。

∂xfn+1
i = ∂xf∗

i +
Gi+1 − Gi−1

2∆x
∆t − ∂xf∗

i

ui+1 − ui−1

2∆x
∆t (21)

ここでGiの計算であるが、直接Gの式を代入しても計算は出来るが、計算量を

軽減する工夫として式 (20)を用いる事が出来る。つまりGi = (fn+1
i −f∗

i )/∆t

なので式 (21)は

∂xfn+1
i = ∂xf∗

i +
(fn+1

i+1 − f∗
i+1) − (fn+1

i−1 − f∗
i−1)

2∆x∆t
∆t − ∂xf∗

i

ui+1 − ui−1

2∆x
∆t

(22)

と既に求まっている量で計算する事が出来る。

2.2 計算手順のまとめ

式 (14)の解き方を簡単に手順をまとめておくと

1. CIP 法（式 (11),(12)) を用いて、移流相（式 (16),(17)) の計算を行い
(fn, ∂xfn) → (f∗, ∂xf∗)とする。　

2. 式 (20),(22)を用いて非移流相の計算を行ない、(f∗, ∂xf∗) → (fn+1, ∂xfn+1)
とし、時間発展させる。

3. 以下、繰り返し

この用にすれば、後述の流体方程式やその他の様々な双曲型方程式（Vlasov-
Boltzmann方程式、等）に対して CIP法が適用出来る事が分かる。
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3 流体力学への応用

3.1 基礎方程式

1次元直交座標系での非粘性圧縮性流体の基礎方程式は次式で表される。

∂ρ

∂t
+ u

∂ρ

∂x
= −ρ

∂u

∂x
(23)

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
(24)

∂p

∂t
+ u

∂p

∂x
= −γp

∂u

∂x
(25)

となる。ここで ρは密度、uは速度、pは圧力、eは単位質量当たりの内部エ

ネルギーである。理想気体では

e =
1

γ − 1
p

ρ
(26)

である。γは比熱比である。式 (23)～(25)はそれぞれ式 (14)と全く同形であ
る。よってそれぞれを移流相・非移流相に分けて CIP法を用いて計算する事
が出来る。

ここで物理量の定義点についてであるが、大きく 2つに分ける事が出来る。
1つは (ρ, u, p)全て同じ点に定義するレギュラー格子、もう 1つはスカラー
量 (ρ, p)の定義点の中間点にベクトル量 u (※多次元を考慮してこう呼ぶ事に
する。）を定義するスタガード格子であるが、本手法では後者を用いる。

�� ������������

,ρ p u

��������������������

図 4: スタガード格子での、1次元での物理量配置。

3.2 人工粘性

圧縮性流体の計算では、超音速になると衝撃波が発生する。衝撃波は数学的

には不連続面であるが、実際は流体に粘性がある為、衝撃波は分子の平均自

由行程程度の厚さを持っている。数値解析では、衝撃波の厚さを格子幅∆x程
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度で捉える事が出来れば良いので、衝撃波面のみに作用する人工的な粘性を

圧力項に加える事で衝撃波を捉える事が可能になる。ここではVon-Neumann
型の人工粘性 [4][5]を用いる。

qi =


 α[−ρiCs(

∂u

∂x
)λ +

γ + 1
2

(
∂u

∂x
)2λ2] if

∂u

∂x
< 0

0 otherwise

である。qiは圧力と同じ定義点なので、(∂u/∂x) = (ui+1/2 − ui−1/2)/∆xで

あり、圧縮領域のみに人工粘性が加わる事になる。 λは衝撃波の厚さである

が、ここでは格子幅∆xとすればよい。また、Cs =
√

γpn
i /ρn

i は音速、αは

人工粘性係数で 0.6から 1.0の間程度の値である。
よって、人工粘性を入れた差分式は

ρn+1
i − ρ∗i

∆t
= −ρ∗

i

u∗
i+1/2 − u∗

i−1/2

∆x
(27)

un+1
i+1/2 − u∗

i+1/2

∆t
= − 1

ρ∗i+1/2

(p∗i+1 + q∗i+1) − (p∗i + q∗i )
∆x

(28)

pn+1
i − p∗i

∆t
= −{γp∗i + (γ − 1)q∗i }

u∗
i+1/2 − u∗

i−1/2

∆x
(29)

となる。ここで ρ∗i+1/2 = (ρ∗i+1 + ρ∗i )/2である。式 (29)中で (γ − 1)q∗i となっ
ているのは、元々は保存形の基礎方程式の圧力に人工粘性を加える事から導

かれる為である。

3.3 応用：CCUP法

前節で移流相に CIP、非移流相に式 (27)～(29)を用いて流体方程式が解け
る事が分かった。ところで、この非移流相を次の様に書き換えてみる。

ρn+1 − ρ∗

∆t
= −ρ∗∇ · �u∗∗ (30)

�u∗∗ − �u∗

∆t
= −∇p∗∗

ρ∗
(31)

p∗∗i − p∗i
∆t

= −γp∗∇ · �u∗∗ (32)

ここで格子点の下添字は省略し、一般的なベクトルの形で書く事にする。式

(27)～(29)では右辺の時刻は全て ∗であったが、本手法では右辺にも ∗∗があ
る陰解法になっている。式 (31)の両辺の divを取り、γp = ρC2

s (Cs は音速)
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である事に注意して式 (32)を代入すると、次の圧力に関する poisson方程式
が導かれる。

∇ ·
(∇p∗∗

ρ∗

)
=

p∗∗ − p∗

ρ∗C2
s∆t2

+
∇ · �u∗

∆t
　 (33)

本手法を CIP-CUP法 (CIP-Combined Unified Procedure)と呼ぶ [6]。式
(33)を反復法（SOR, Bi-CGSTAB, etc) で p∗∗を求めてから式 (31)で �u∗∗を
求め、式 (30)で ρn+1を求める。非圧縮性流体は音速∞の近似であるが、式

(33)で Cs → ∞とするとMAC法の様な式になる。この様に音速を変える事
によって圧縮性・非圧縮性流体を統一的に解く事が出来る。実際には人工粘

性・実粘性・熱伝導等の効果を入れる事になるので、

�un+1 − �u∗∗

∆t
= �Qu (34)

pn+1 − p∗∗

∆t
= Qp (35)

( �Qu, Qpは先述の効果）の様に後でそれらの効果で時間発展させ、pn+1、�un+1

を求める。

3.4 計算例

　計算例として最も典型的な衝撃波管問題を CIP法と CCUP法で解いた
結果を示す。初期条件は p = 1, ρ = 1 (x < 1), p = 0.1, ρ = 0.125 (x > 1)。比
熱比 γ = 1.4、格子幅∆x = 0.1 時間刻み∆t = 0.01とし、400ステップまで
計算を行なった。また、人工粘性係数 α = 0.7である。図 5は密度の結果で
あるが、共に解析解とほぼ一致した解が得られている事が分かる。また、衝

撃波面も sharpに捉えられている事が分かる。
接触不連続面で若干の overshoot,undershootが見られるが、これらも単調

性が保証されている有理関数 CIP法 [7]を用いる事で改善する事が出来る。
圧縮性流体の計算では CIP法の方が Rarefaction Wave等を見ても若干良い
様であるが、CCUP法は計算が安定であるという利点がある。
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図 5: CIP法（左）と CCUP法（右）の計算結果（密度）

3.5 （Appendix) 円柱・球座標系の半径方向 1次元CIP

ここまで述べてきたのはデカルト 1次元座標系だが、容易に他の座標系に
も拡張出来る。例えば流体方程式は次の様に一般的に書き換えられる。

∂ρ

∂t
+

1
rδ

∂(ρurδ)
∂r

= 0 (36)

∂u

∂t
+ u

∂u

∂r
= −1

ρ

∂p

∂r
(37)

∂e

∂t
+ u

∂e

∂r
= − p

ρrδ

∂(urδ)
∂r

(38)

ここで、δ = 0, 1, 2はそれぞれデカルト、円柱、球座標に対応する。よって、
右辺の非移流項は

G =
(
− ρ

rδ

∂(urδ)
∂r

,−1
ρ

∂p

∂r
,− p

ρrδ

∂(urδ)
∂r

)
(39)

と変えるだけで良い。

4 保存保証型CIP法

4.1 CIP-CSL2(Conservative Semi-Lagrangian)法

第 1,2章で述べた CIP法は「非保存形」の方程式に適用するので、値の保
存が数学的には保証されていない。（※しかし、通常の非保存形の差分法と比

較しても保存の崩れは非常に小さい。）そこで近年、保存が保証される CIP
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法が提案されている。これまで CIP-CSL4[8]法と CIP-CSL2 [9]法が提案さ
れているが、本節では CIP-CSL2法について述べる。
例えば次の様な方程式を考える。

∂D

∂t
+ u

∂D

∂x
= 0 (40)

これは普通の移流方程式だが、式 (40)の空間微分を取り、D
′ ≡ ∂D/∂xとす

ると次の保存方程式が得られる。

∂D
′

∂t
+

∂(uD
′
)

∂x
= 0 (41)

この事から、式 (41)でD
′ ≡ f(=値),式 (40)でD =

∫
fdxとすれば CIP

法における値と微分値の関係をそのまま積分値と値に置き換える事が出来、

第 1,2章で述べた関係式をそのまま適用する事が出来る。
通常の CIP法は値 f と微分値 ∂f/∂xを用いて 3次補間関数を構築するが、

CIP-CSL2法は値 f と積分値 ρ =
∫

fdxを用いて 2次関数を構築する。その
際、積分値 ρは格子の中点に定義する。値が 2次関数なので、積分値の関数
は 3次関数になっている。そこで

Di(x) =
∫ x

xi

f(x
′
)dx

′
(42)

を導入し、

Di(x) = A1iX
3 + A2iX

2 + fn
i X (43)

と積分値を 3次関数で補間すれば、その微分に対応する値の関数は

Fi(x) =
∂D(x)

∂x
= 3A1iX

2 + 2A2iX + fn
i (44)

と書く事が出来る。ここでX ≡ x − xi である。

補間関数Di(x)の連続条件は、Di(x)が値を与える事に注意すると CIP法
と同様に

Di(xi) = 0, Di(xiup) = −sgn(ui)ρn
icell,

∂xDi(xi) = fn
i , ∂xDi(xiup) = fn

iup (45)
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ここで、ρn
icell は上流側の格子内の全質量（icell = i − sgn(ui)/2)、iup =

i − sgn(ui)である。よって、係数 A1,A2は

A1 =
fn

i + fn
iup

∆x2
i

+
2sgn(ui)ρn

icell

∆x3
i

(46)

A2 = −3sgn(ui)ρn
icell

∆x2
i

− 2(fn
i + fn

iup)
∆xi

(47)

∆xi ≡ xiup − xi であり、この様に一意に決定する事が出来る。

4.2 時間発展のまとめ

CIP法が値 f と微分値 ∂xf の時間発展が必要なのに対応して、CIP-CSL2
法は値 f と積分値 ρの時間発展が必要である。よって、保存方程式

∂f

∂t
+

∂(uf)
∂x

= 0 (48)

を CIP-CSL2法で解く時は

1. 値 f は、式 (48)を移流相と非移流相に分け、式 (16),(18)（※ g = 0）の
様に時間発展させる。つまり

(a)移流相

f∗
i = F (xi − u∆t) = 3A1ξ2 + 2A2ξ + fn

i (49)

(b)非移流相　

fn+1
i = f∗

i + Gi∆t Gi = −f∗
i

∂u

∂x
　 (50)

である。

　

2. 積分値 ρは、格子内の質量の流入出を考慮すればよいので（図 6参照）

ρn+1
i−1/2 = ρn

i−1/2 + (∆ρn
i−1 − ∆ρn

i ) (51)

とすればよく、また∆ρn
i は格子点上での質量流束を表し、

∆ρn
i =

∫ xi

xi+ξ

F (x
′
)dx

′
= −Di(xi + ξ)

= −(A1iξ
3 + A2iξ

2 + fn
i ξ) (52)

と書く事が出来る。

3. 　以下、繰り返し

12



ここで ξ = −ui∆tである。式 (51),(52)は、各格子間での質量（積分値）の
収支を表しているので、計算領域全体で全質量が保存される事がわかる。

本手法は、例えば流体方程式の連続の式は CIP-CSL2法で解いて質量保存
させ、運動方程式・エネルギー式は通常の CIP 法で解くといった応用が出
来る。

ix1−ix
x

iρ∆
1−∆ iρ

2/1−iρ

)(xFi

)(1 xFi−

tui ∆−1 tui∆

図 6: ∆t内の格子内の質量流入・流出。

4.3 計算例

式 (48)の計算例として、次の計算を行なった。速度は

u(x) = 1.0/(1.0 + 0.5sin(2πx)) (53)

とし、値の初期条件は

f(x, t = 0) =

{
1 if 0.25 ≤ x ≤ 0.45
0 otherwise

とした。格子幅∆x = 2.0/N（Nは格子数）、時間幅∆t = ∆x× 0.2とし、格
子数を変えてそれぞれ t = 0.8まで計算を行なった。また、積分値 ρの初期

条件は格子間が直線補間されているとして

ρ0
i−1/2 =

f0
i−1 + f0

i

2
(xi − xi−1) (54)

とした。

図 7(a)(b)は計算結果と解析解との比較、図 7(c)(d)はMass Error（最も粗
い N = 200)を表している。計算結果については、同じ格子数で従来の CIP
法とほぼ同等の結果を得る事が出来ている。保存については、値 f については

完全には保存はしていない。これは初期条件で積分値を直線補間したと仮定

13



����

�

���

���

���

���

�

���

���

� ���	 ��� ���	 ��� ���	 ��
 ��
	 ���

�����
�����
������
���	
��


�

�

� � � � � �

������

�����

������

�

�����

����

�����

����

� ��� ��� ��� ��� ��� ��	 ��
 ���

�
���������

�
����

�
��
�
�
�
�
��
�
	

����

�� ��
���

�	 ��
���

�

	 ��
���

� ��
���

��	 ��
���

� ��� ��� ��
 ��� ��	 ��� ��� ���


��

�
��
�
�
�
�
�

�
��

	

����

� � �

� � �

����

�

���

���

���

���

�

���

���

� ���	 ��� ���	 ��� ���	 ��
 ��
	 ���

�����
�����
������
���	
��


�

�

���������������� ������

図 7: 計算結果。(a)格子数N = 200, 600, 2000の結果と解析解 (CIP-CSL2)、
(b)同 CIP、(c)値 fのMass Error(CIP、CIP-CSL2)、(d)積分値 ρのMass
Error(CIP-CSL2)。
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した為である。CIP法も十分小さい範囲で fも保存されているが、CIP-CSL2
法は更にその保存が良くなっている。また、CIP-CSL2法で用いられている
積分値 ρについては計算機の誤差 (～10−14)以内で質量が保存されている。
格子内質量の正しい定義が fi∆xではなく ρi−1/2 であることを考慮すれば、

本手法は完全な保存保証スキームである事が分かる。

4.4 多次元化

4.4.1 2次元

多次元化する方法として、Directional Splitting[10]の方法を簡単に紹介す
る。例えば 2次元の場合、方程式は　

∂f

∂t
+

∂(uf)
∂x

+
∂(vf)

∂y
= 0 (55)

となるが、1次元の手法を活用する為に図 8の様な物理量を定義する。

1, +jxiσ

jxi,σ

jyi,σ 1,1 ++ jiρ jyi ,1+σ

1,1 ++ jif

jif ,1+

1, +jif

jif ,

図 8: CIP-CSL2の物理量 (2次元）。線密度 σx,σy と密度 ρ。

ここで、

σn
xij =

∫ xi+1

xi

f(x, yj , t)dx (56)

σn
yij =

∫ yj+1

yj

f(xi, y, t)dy (57)

ρn
ij =

∫ xi+1

xi

∫ yj+1

yj

f(x, y, t)dydx (58)

15



である。計算手順は

STEP1 :
∂f

∂t
+

∂(uf)
∂x

= 0 (59)

STEP2 :
∂f

∂t
+

∂(vf)
∂y

= 0 (60)

を順次行なう。前節、式 (48)～(52)の手順をCIPCSL1D(u, fn, fn+1, ρn, ρn+1, x)
と置くと、

STEP1 : CIPCSL1D(u, fn, fstep1, σn
x , σstep1

x , x)

ū =
uij + uij+1

2
CIPCSL1D(ū, σn

y , σstep1
y , ρn, ρstep1, x) (61)

STEP2 : CIPCSL1D(v, fstep1, fn+1, σstep1
y , σn+1

y , y)

v̄ =
vij + vi+1j

2
CIPCSL1D(v̄, σstep1

x , σn+1
x , ρstep1, ρn+1, y) (62)

とすればよい。

4.4.2 3次元

3次元では、線密度 σx,σy,σz と面密度 Sxy, Syz, Szx（と密度 ρ）を用意す

る（図 9参照）。ここで

Sn
xyijk =

∫ xi+1

xi

∫ yj+1

yj

f(x, y, zk, t)dydx (63)

Sn
yzijk =

∫ zk+1

zk

∫ yj+1

yj

f(xi, y, z, t)dydz (64)

Sn
zxijk =

∫ xi+1

xi

∫ zk+1

zk

f(x, yj , z, t)dxdz (65)

ρn
ijk =

∫ xi+1

xi

∫ yj+1

yj

∫ zk+1

zk

f(x, y, z, t)dxdydz (66)

である。同様に計算手順は

STEP1 :
∂f

∂t
+

∂(uf)
∂x

= 0 (67)

STEP2 :
∂f

∂t
+

∂(vf)
∂y

= 0 (68)

STEP3 :
∂f

∂t
+

∂(wf)
∂z

= 0 (69)

であり、2次元と同様に
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yzijkS

zxijkS

zijkσ

ijkf

xyijkS
xijkσ

yijkσ

�

�

�

図 9: CIP-CSL2の物理量 (3次元）。線密度 σx,σy,σz と面密度 Sxy,Syz,Szx

STEP1 : CIPCSL1D(u, fn, fstep1, σn
x , σstep1

x , x)

ū =
uijk + uij+1k

2
CIPCSL1D(ū, σn

y , σstep1
y , Sn

xy, S
step1
xy , x)

û =
uijk + uijk+1

2
CIPCSL1D(û, σn

z , σstep1
z , Sn

zx, Sstep1
zx , x)

ũ =
uijk + uijk+1 + uij+1k + uij+1k+1

4
CIPCSL1D(ũ, Sn

yz, S
step1
yz , ρn, ρstep1, x) (70)

STEP2 : CIPCSL1D(v, fstep1, fstep2, σstep1
y , σstep2

y , y)

v̄ =
vijk + vi+1jk

2
CIPCSL1D(v̄, σstep1

x , σstep2
x , Sstep1

xy , Sstep2
xy , y)

v̂ =
vijk + vijk+1

2
CIPCSL1D(v̂, σstep1

z , σstep2
z , Sstep1

yz , Sstep2
yz , y)

ṽ =
vijk + vijk+1 + vi+1jk + vi+1jk+1

4
CIPCSL1D(ṽ, Sstep1

zx , Sstep2
zx , ρstep1, ρstep2, y) (71)

STEP3 : CIPCSL1D(w, fstep2, fn+1, σstep2
z , σn+1

z , z)

w̄ =
wijk + wi+1jk

2
CIPCSL1D(w̄, σstep2

x , σn+1
x , Sstep2

zx , Sn+1
zx , z)

ŵ =
wijk + wij+1k

2

17



CIPCSL1D(ŵ, σstep2
y , σn+1

y , Sstep2
yz , Sn+1

yz , z)

w̃ =
wijk + wij+1k + wi+1jk + wi+1j+1k

4
CIPCSL1D(w̃, Sstep2

xy , Sn+1
xy , ρstep2, ρn+1, z) (72)

である。
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CIP法によるMHD解法

「天体とスペースプラズマのシミュレーションサマースクール」
2002年 9月 11日-9月 15日

場所：名古屋大学情報メディア教育センター

1 CIP法によるMHD解法：CIP-MOCCT法

現在様々なMHD解法が存在するが、CIP法でMHDを解く場合に磁場項
と誘導方程式をどの様に解くかが課題となる。その解決法として、誘導方程

式の解法であるMOCCT法を組み合わせたCIP-MOCCT法がKudoh（国立
天文台）によって提案された [1][2][3]。これを紹介する。
磁気流体の基礎方程式は次の様に書かれる。

∂ρ

∂t
+ (u · ∇)ρ = −ρ∇ · u (1)

∂u
∂t

+ (u · ∇)u = −1
ρ
∇(p +

B2

8π
) +

1
4πρ

(B · ∇)B + Qf (2)

∂p

∂t
+ (u · ∇)p = −γp∇ · u + Qp (3)

∂B
∂t

−∇× (u× B) = 0 (4)

∇ · B = 0 (5)

ここでQf は実粘性・人工粘性・重力等の外力項、Qpは熱伝導・人工粘性等

の項である。

式 (1)～(3)中の左辺は CIP法で解き、右辺は非移流相として解けば良いの
だが（圧力項を Poisson方程式で解けば CCUP法になる）、式 (4),(5)の解法
にMOCCT法を用いる。

2 MOCCT法の概略

MOCCT法は∇ ·B = 0を満たす様に式 (4)を解く CT法と、アルフベン
波特性曲線を安定に解く為のMOC法を組み合わせた手法である。

1



2.1 MOC : Alfven波特性曲線法

磁気流体方程式中のMaxwell方程式は

∂B
∂t

= ∇× E (6)

E = −u × B + ηJ (7)

であるが、ここでは η = 0とする。まずは簡単の為、1次元（X方向）の場
合を採りあげる。格子点 xi上に ρ, p, By, vy を配置し、格子点間に vxと起電

力（電場）Eの z成分 εz を配置する。（図 1）

�� ������������

ρ
yB

p
yv ε

xv

��������������������

図 1: 1次元の物理量配置。速度 X成分と電場は格子の中心に定義。

式 (6),(7)より By の方程式は次の様に差分化する事が出来る。

Bn+1
yi − Bn

yi

∆t
+

(εz)
∗
i+1/2 − (εz)

∗
i−1/2

∆x
= 0 (8)

ε∗zi+1/2 = ui+1/2B
∗
y − v∗Bx

ここで ∗は中間の時刻 (n + 1/2)を表す。また、∇ · u = 0 より、Bx =const
である。この ε∗z を求める時にアルフベン波の特性曲線法 (Method of Char-
acteristics : MOC)を用いる [4]。アルフベン波は非圧縮性MHDに見られる
波動であるので、特性曲線は次の 2つの式、運動方程式と誘導方程式から導
かれる。

∂vy

∂t
=

Bx

4πρ

∂By

∂x
− ∂ (vxvy)

∂x
(9)

∂By

∂t
= Bx

∂vy

∂x
− ∂ (vxBy)

∂x
(10)

2



（※ ρ, vx, Bx =constant)　式 (9),(10)を変形すると、別の 2式が得られる。

Dvy

Dt
∓ 1√

4πρ

DBy

Dt
= 0　 (11)

D

Dt
=

∂

∂t
+

(
vx ± Bx√

4πρ

)
∂

∂x
(12)

式 (12)は特性速度（移流速度）がC± = vx ± Bx√
4πρ

を意味し、特性線：式

(11)に沿って vy ∓ By√
4πρ

が保存される不変量になっている事を表している。

よって、式 (11)を特性線に沿って積分すると、特性曲線の始点（時刻 n）

と ∗の間には次の様な関係式が導かれる事になる。（図 2)

v∗y − v+
y − 1√

4πρ+
(B∗

y − B+
y ) = 0 (13)

v∗y − v−y +
1√

4πρ−
(B∗

y − B−
y ) = 0 (14)

ここで、(By, vy)± は各特性線 C± の始点の値である。式 (13),(14)から、v∗y
と B∗

y は

v∗y =
v+

y

√
4πρ+ + v−y

√
4πρ− − B+

y + B−
y√

4πρ+ +
√

4πρ−
(15)

B∗
y =

−v+
y + v−y + B+

y /
√

4πρ+ + B−
y /

√
4πρ−

1/
√

4πρ+ + 1/
√

4πρ−
(16)

の様に求める事が出来る。簡単の為、ρ+ = ρn
i−1, ρ− = ρn

i+1 とする。

始点の値 f(= By, vy)± は、式 (12)を見ても分かるように移流の形をして
いるので、格子間を補間して求める事が出来る。補間方法には様々あるが、

例えば van Leerの方法（i − 1/2と i + 1/2を直線補間する方法）では

f(= By, vy)± =




fn
i + 1

2 (∆x − C±
i+1/2∆t)

∆f

∆x (i)
if C±

i+1/2 > 0

fn
i+1 − 1

2 (∆x + C±
i+1/2∆t)

∆f

∆x (i+1)
otherwise

ここで、

∆f

∆x (i)
=




2∆fi−1/2∆fi+1/2

∆fi−1/2 + ∆fi+1/2
if ∆fi−1/2∆fi+1/2 > 0

0 otherwise

3



n+1/2(*)

n
ii-1/2 i+1/2

C+ C-

n+1

+
yB +

yv −
yB −

yv

xyix

i

BvBv **
2/1

2/1
*

−
=

+

+ε

1+n
yB

t

x

図 2: アルフベン波特性曲線と磁場の時間発展。実線矢印：特性曲線により
起電力を求める。点線矢印：式 (8)を用いて By の時間発展を行なう。

∆fi+1/2 = (fi+1 − fi)/∆xである。この補間方法にも CIP法を適用する事も
出来る。

2.2 多次元、CT法

前節は 1次元の場合だが、そのまま多次元に拡張する事も出来る。例えば
2次元では磁場の各成分は

∂Bx

∂t
= −∂ε

∂y
(17)

∂By

∂t
=

∂ε

∂x
(18)

ε = −(vxBy − vyBx) (19)

であるが、各物理量の配置は図 3の様にする。スタガード格子なので、スカ
ラー量は格子中心、ベクトル量は格子境界、また起電力 εは格子の角に配置す

る。この様にすれば 1次元の手法を用いて X方向でBy, vy、Y方向で Bx, vx

を求め、式 (19)の εが求まり、式 (17),(18)を差分化した式

4



εyy Bv ,

xx Bv ,
p,ρ j

1−j

2/1−j

2/1+j

2/1+ii2/1−i1−i

図 3: 2次元MHDコードでの物理量の配置、CT法
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Bn+1
x(i+1/2,j) − Bn

x(i+1/2,j)

∆t
= −

ε
n+1/2
(i+1/2,j+1/2) − ε

n+1/2
(i+1/2,j−1/2)

∆y
(20)

Bn+1
y(i,j+1/2) − Bn

y(i,j+1/2)

∆t
=

ε
n+1/2
(i+1/2,j+1/2) − ε

n+1/2
(i−1/2,j+1/2)

∆x
(21)

で磁場が時間発展される。これは 3次元でも同様に拡張が出来る。
図 3の様に物理量を配置する方法を CT法と呼ぶが、この様に磁場と電場

を異なる場所で定義すると、式 (20),(21)を用いて、初期条件で∇ ·B = 0が
満たされていれば常に∇ · B = 0になる事が示される [4]。
この事から分かるように、CT法は単に∇ ·B = 0を保証する手法であり、

電場 εの求め方の規定はしていない。これにMOC法を組み合わせる事で安
定なスキームになっている。

2.3 運動方程式中の磁気ストレス項

運動方程式の右辺にも磁気ストレス項が存在するが、この項にもMOC法
を用いて値を評価する事になる。例えば、2次元MHDの運動方程式のｙ成
分は次式である。

∂vy

∂t
+ vx

∂vy

∂x
+

∂vy

∂y
= −1

ρ

∂

∂y

(
p +

B2
x

8π

)
+

Bx

4πρ

∂By

∂x
(22)

この内、磁気圧項（右辺第 1項）は圧力と同様の差分を作ればよいが、第 2
項はストレス項でありこの項にMOC法を適用する。非移流相において第 2
項の差分のみ表記すると

(vy)∗i,j+1/2 − (vy)n
i,j+1/2

∆t
= . . .

+
(

1
4πρ̄

)
< Bx >n

i,j+1/2

(By)∗i+1/2,j+1/2 − (By)∗i−1/2,j+1/2

∆x
(23)

ここで、ρ̄, < Bx >n
i,j+1/2 はそれぞれ vy の定義点 (i, j + 1/2)上での平均値

である。例えば

< Bx >n
i,j+1/2=

1
4
[(Bx)i+1/2,j + (Bx)i+1/2,j+1 + (Bx)i−1/2,j(Bx)i−1/2,j+1] (24)
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等である。式 (23)における、B∗
y の値の見積りにMOC法を用いる。しかし、

この計算は非移流相の計算であり、移流部分は CIP法で別に計算する事にな
るので特性速度は

C± = ± Bx√
4πρ

(25)

を用いて計算する。（※式 (11),(12)は移流項も含めて特性線を出していた))
これは運動方程式の x成分も同様に計算を行なう。

2.4 計算手順

CIP法とMOCCT法をまとめた手順は次の様になる。

1. 初期条件 (ρn,un, pn,Bn)を設定。

2. 非移流項の計算　 (ρn,un, pn) → (ρ∗,u∗, p∗)

(a) この時、運動方程式のストレス項の計算はMOC法で求める。（式
(23)～(25))

3. 移流相と磁場の時間発展

(a) CIP法でρ,u, pの移流相の計算を行なう。(ρ∗,u∗, p∗) → (ρn+1,un+1, pn+1)

(b) MOC法で電場 εを計算し、CT法で磁場Bn+1を計算。（式 (20),(21))

4. 以下、繰り返し

典型的な計算例として、1.5次元衝撃波管問題の計算例を CIP-MOCCT法
で解いた結果を示す。1.5次元なので磁場・速度の y成分はあるが、∂/∂y = 0
である（勿論、z成分は値・微分共に 0)。初期条件は p = 1, ρ = 1, By = 1.0
(x < 400), p = 0.1, ρ = 0.125, By = −1.0 (x > 400)。比熱比 γ = 1.4、格子
幅∆x = 2.0とし、t = 80.0の結果を示す。人工粘性係数は 0.7である。
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図 4: 1次元MHD衝撃波管問題。

8



参考文献

[1] T.Kudoh and K.Shibata, Numerical MHD Simulation of Astrophysical
Problems by Using CIP-MOCCT Method; CFD Journal,8, 56 (1999)

[2] T.Kudoh and K.Shibata, Alfven Wave Model of Sppicules and Coronal
Heating, Astrophysical Journal,514,493 (1999)

[3] T.Kudoh and K.Shibata, Magnetically Driven Jets from Accretion
Disks. II. Nonsteady Solutions and Comparison with Steady Solutions,
Astrophysical Journal,476,612 (1997)

[4] J.F.Hawley and J.M.Stone, MOCCT: A Numerical technique for astro-
physical MHD, Comput.Phys.Commun,89,127 (1995)

9


