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第�章 �次元電磁粒子シミュレーショ
ン法

ここでは、宇宙プラズマを構成する電子、イオンを粒子として扱う電磁粒子シミュ
レーション手法について概説する。

��� 基礎方程式
本シミュレーションコードで用いる基礎方程式は衝突項を含まない粒子の運動

方程式 �式 ���� と式 ���
  および以下に示した"�+,���の電磁方程式である。
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ここで、�& 	 & �はそれぞれ、光速、電流密度ベクトル、電荷密度を示す。
"�+,���方程式のうち、式 �
�� &式 �
�� は時間 �$�で満足されておれば、それ

以後の時間においては自動的に満足されるので、基本的には式 �
�� & 式 �
�
 だけ
解けばよい。すなわち、シミュレーションシステム内の電界の初期値を求めるた
めには式 �
�� のポアソン式を解く必要がある。また、式 �
�� より、�次元シミュ
レーション方向での磁場の変動は常にゼロである。

��� 粒子モデルの基本概念
前述のテスト粒子解析とは違い、粒子シミュレーションでは、粒子更新による

電流や電荷の変化が電磁界に影響を与え、その影響が粒子にフィードバックされ
る。すなわち、粒子シミュレーションにおいて、プラズマや電磁界の時間空間発展
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図 
��' 超粒子の形状および -��.� /�)���

は粒子の運動方程式と"�+,���方程式を互いに解き進めることによって得られる
わけである。運動方程式と"�+,���方程式を繋げる物理量は電流密度 
と電荷密
度 �であり、これらはプラズマ各粒子の運動を決定する速度 �& �で表される。し
かし、現実のプラズマは、たとえば、デバイ長を単位とする立方体内に非常に多
数の粒子が含まれるため、���0�& 磁気圏プラズマにおいては ��	 � ���程度 、粒
子一つ一つの運動をすべて追跡することは計算機資源から見ても非現実的である。
また、粒子の運動を追跡する場合、粒子軌跡は連続であるため任意の粒子位置に
おいて電磁界が必要となる。
これらの問題を解決するために 123法 �1����)���2
�3��� を用いる。まず、多くの

現実のプラズマ粒子を代表する大きい電荷、大きい質量をもつ超粒子���.��.����)�� 

を考え、この超粒子を多数用いることによりプラズマ環境を再現する。この超粒
子に空間的にある大きさをもたせる方がより現実のプラズマの性質を模擬するこ
とができる。今回は、簡単のため図 
��に示すような長方形形状を採用する。すな
わち、大きさは空間格子点間隔#�をもつとする。
また、超粒子はシミュレーションシステム内で任意の位置を取ることができる。

超粒子に働く電磁界は粒子同士のクーロン力を直接計算するのではなく、シミュ
レーション空間に離散点として定義された空間格子点にその粒子情報（電流、電
荷）を一旦配分し、それらの情報を用いて同じく格子点上で定義された電磁界成
分について"�+,���方程式を用いて更新する。




��� 電磁界定義のための空間格子点 ��
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図 
�
' 整数格子と半整数格子および各電磁界の定義点

上述のように超粒子は点電荷ではなく広がりがあるため、格子点に電荷量を配
分するときには ���� � � � に従って行う。この重み関数 �を ���.� /�)���と呼
び、図 
�� に示す。ただし� �は格子点位置、� は粒子の中心とする。各超粒子
の運動を更新する際には、その隣接する格子点上の電磁界を超粒子位置に内挿し
それを用いて運動方程式を解く。すなわち、超粒子の情報を格子点を介して電磁
界更新に用い、その電磁界を再び粒子更新に用いるのが123法である。粒子の速
度 �および位置 �更新は上述したが、電磁界の格子点での扱いについて以下に述
べる。

��	 電磁界定義のための空間格子点
テスト粒子シミュレーションでは、粒子ダイナミクスが電磁界に影響を及ぼさ

ないため、電磁界を"�+,���方程式で解き進める必要がなかった。しかし、一般
に、超粒子の運動は電流と等価であり、これによりシステム内の電磁界は変動す
る。この超粒子プラズマダイナミクスによる電流の寄与を"�+,���方程式に取り
込み、電磁界を解き進めるには、それらの各成分を時間的、空間的に離散点に定
義する必要がある。これは、"�+,���方程式を差分形式で解くためである。ここ
では、まず空間格子点について説明する。

"�+,���方程式を中心差分で解きするため、シミュレーションシステム内に整数
格子群 �#��� $ �	 
	 �	 ���	 � $ � と半整数格子群 �� % ��
 #�を用意する。図 
�


に示すように ��	 ��	 ��	 � は整数格子点に定義され、その他の電磁界成分は半整
数格子点に定義される。電界成分と磁界成分は互いに入れ子に配置されているが、
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これは、"�+,���方程式を �方向の空間変動のみを考慮した１次元空間で展開し
てみれば理解できる。また、電流密度 ��	 ��	 ��はそれぞれ電界成分��	 ��	 ��と
同じ格子点に定義する。ただし、整数格子、半整数格子とは便宜上の呼び名であ
り、シミュレーションコード内では、電磁界の配列の添え字は整数であるので混
乱しないように注意する。
前章で��
���
������法による粒子速度更新について述べたが、その際に、粒

子位置での電磁界の値が必要となる。粒子位置での電磁界は粒子位置に隣接する

つの格子点上の電磁界成分を用いて内挿することにより求める。ただ、上述のよ
うに電磁界成分は整数格子、半整数格子の二つの格子システムに定義されている
ため、各粒子位置への内挿法はそれぞれ違う。また、粒子位置での電磁界成分を
求める際には、静電的および静磁的ないわゆる“セルフフォース”に注意する必
要がある。以下にそれについて簡単に述べる。
後述するが、静電界成分は電荷密度を用いてポアソン方程式を満たすように得

られる。すなわち、
���

��
$ � �
�	 

が満たされ、��
����� ���
����� $ �� という関係がシミュレーション内で得られる
（簡単のために �� $ �としている。）。見てわかるように、��は半整数格子点での
定義であるため、電荷密度 �は整数格子点で定義される。すなわち、シミュレー
ションシステム内に分布するプラズマ粒子の各電荷量は各粒子に隣接する整数格
子点に線形的に配分され電荷密度 �が得られ、その情報を元に式 �
�	 から半整数
格子点において電界値��が求められる。　
さて、運動方程式を用いて粒子速度を更新する場合は粒子位置での電界値が必

要であるが、これを上に定義された半整数格子点から内挿して求めると正しい電
界値が得られない。たとえば、速度を持たない �粒子をある点におき、上のように
して求めた電界値を用いると粒子位置での電界値は本来ゼロであるべきが、ゼロ
にはならない。これをセルフフォースという。詳細は省くがこのセルフフォースを
回避するには、"�+,���方程式を解くために半整数格子に定義されていた電界値
��を粒子更新の際にはもともとの電荷配分点である整数格子点に再配分し、その
値を用いて粒子位置に電界値を内挿する。すなわち粒子速度更新の際には��
� $

���
����� % ��
����� �
で得られた値を用いて粒子位置に電界値を内挿するとうま
くいく。つまり、セルフフォース回避の原則として、粒子電荷を配分した格子点で
の電界成分を用いて粒子位置での電界成分を内挿することが言える。同じことが
電流密度 � と磁界�についてもいえる。"�+,���式より �次元では��& ��は
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��� 時間更新チャート �	
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図 
��' 時間更新チャート
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となり��と ��および��と ��についてもそれぞれ互いに入れ子になる必要があ
るため違う格子点で定義される。しかし、電流密度は粒子情報から直接得られる
ので、粒子速度更新の際に磁界を用いる場合は電流密度が定義された格子点に磁
界を再配置する必要がある。

��� 時間更新チャート
ここでは、電磁界と粒子の時間発展を解き進める手順を概説する。フローチャー

トを図 
��に示す。時間についても空間同様、整数格子群�#�、半整数格子群 ��%
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��
 #�の 
つを用意し、時間的な中心差分に対応させる。

�� 初期のプラズマ分布より各格子点における電界密度 �を求め、ポアソン式を
解き、初期電界を求める。


� 半ステップ、磁界�を解く。

�� � $ �#�における電界�、磁界�が求まったので運動方程式より � $ �� %

��
 #�における各超粒子の速度 �を求める。

�� � $ ��% ��
 #�の速度を用いて粒子位置 �を半ステップ分進める。

	� � $ �� % ��
 #� における各粒子の位置、速度が決まったので後述の電荷保
存法により電流密度 	 を各格子点で計算する。

�� 磁界�を更に半ステップ進める。

�� � $ ��% � #�における電界�を求める。

�� � $ ��% ��
 #�の速度 �を用いて更に半ステップ各粒子の位置を進める。

以上、�ステップ �#� 分、電磁界および粒子ダイナミクスが時間更新される。こ
れらを繰り返し行うことにより、シミュレーションシステム内でのプラズマ現象
の空間・時間発展を解き進めることができる。

��� 電界及び磁界更新ルーチン
電界の時間更新には式 �
�� を用いる。�次元モデルでは、解くべき式は以下の

�式である。
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また、磁界の時間更新には式 �
�
 を用いる。�次元モデルでは、解くべき式は
以下の 
式である。式 �
�� から��の変動はないので解かない。
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��� 電荷密度ルーチン ��
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ただし、図 
��の時間更新チャートであるように、磁場は運動方程式を解く際に電
界と時間ステップをあわせる必要があるため、#��
分を 
回解くことになる。

��� 電荷密度ルーチン
電界の初期値を得るためには、シミュレーションのはじめにポアソン方程式を

解く必要がある。これにより、初期の電荷密度分布による電界分布が得られ、こ
の電界を用いて、上述の電界更新を行う。ポアソン方程式にはシステム内の電荷
密度 �が必要であるが、これを求めるにはシステム内に存在する超粒子の電荷を
各格子点に配分する必要がある。基本的には図 
��に示した重み関数�を用いて各
格子点に電荷を配分する。その具体的な方法を図 
��に詳しく示す。超粒子の形は
幅#�の長方形とし、その中心位置を ��とすると、もし�� � �� � ����なら格子
点��と����に粒子の電荷 �は配分される。すなわち、���� ��� �#�は ������ 

に配分され、������ � �� �#�は ���� に配分される。
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��� 電流密度ルーチン
電流密度 	 は各超粒子の速度と位置から計算する。"�+,���方程式の差分形か

ら、��と ��は半整数格子点、��は整数格子点に定義されているが、簡単のため、
一旦、半整数格子点で電流密度	 を計算し、その後 ��を整数格子に再配置するこ
とにする。
��と ��については電荷密度の計算と同じ方法で超粒子のモーメントを隣接する


つの格子点に線形重みで分配する。��については電荷保存法を用いる。これは
システム方向の電荷の連続式
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を常に満たすように電流を求める方法である。差分形で書くと、

����� � ��� $ ���
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となる。
超粒子が �タイムステップ #�の時間に �空間格子 #�以上移動しない場合、

������
� を計算するには、
つの場合が考えられる。まず第一の場合は、図 
�	に示
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したように粒子が同じ格子内の移動であり、第二の場合は、図 
��にあるように 


つの格子が関係する場合である。
第一の場合は、格子点������における電流値������は時間ステップ#�内に������

の点を通過した電荷量を計算することで得られる。すなわち、

������ $
�
 � ��

#�
�
��	 

となる。ただし、�
& ��は次のように与えられる。
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また、第二の場合は、粒子運動が������と������の 
つの格子点での電流に寄
与する。すなわち、
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となる。ただし、図では、粒子速度が正を仮定したが、負の速度を持つ場合、式
�
��	 と式 �
��� の左辺に��をかける必要がある。以上の方法は、既に公開され
ている��"16�シミュレーションコードにおいて、オリジナルな電流ルーチンと
して実装されている。�"�������� �
� 6����& 3��.���� �.�)� .����� .�*��)�'

���������
 ��)��0��& 7���� 1�8�& .��� 
�& ���� 
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��� 電界補正
上述の電荷保存法による電流計算を用いれば、基本的にポアソン方程式が満た

されるので電荷密度と静電界の関係は正しく解かれていることになる。　しかし、
電流密度を電荷密度と同じ方法（各時間ステップにおいて粒子のモーメントを隣
接する 
つの格子点に配分することにより電流密度を計算）で求めた場合、電荷
の連続の式が常に満たされているとは限らない。この場合、ある一定時間間隔で
ポアソン方程式を陽に解くことにより静電界を補正することが必要になる。ただ
し、�次元モデルの場合、��は静電界のみであり、式 �
�	 の解が��そのものに
なる。また、電荷密度から初期の電界分布を求めるためにも以下のポアソン方程
式を解く必要がある。

��� $ �� �
��� 

差分形式では次にように表される。
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ポアソン式の解法はさまざまなものが提唱されているが、空間的に周期境界のも
とでは、高速フーリエ変換を用いた方法が一般的である。すなわち、電荷密度分
布 ���� をフーリエ変換し ��
� を求め、次式から波数空間 
において電位 ��
� 

を求める。
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���
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であり、
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得られた電位��
� を逆フーリエ変換することにより各格子点での���� 、すなわ
ち ��を求める。電界値��
����� は次式から求まる。
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