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第�章 テスト粒子解析

本章では、テスト粒子解析手法について概説する。テスト粒子解析は、ある与え
られた電磁界環境の中でプラズマ粒子がどのような振る舞いをするかを計算する
ものであり、プラズマ粒子の運動による電流変化は電磁界環境にはフィードバッ
クされない。粒子の速度更新は微小時間ステップ#�毎に行い、これにより粒子の
軌跡や加速減速を見る。ここで述べる速度更新や位置更新の手法は後述する電磁
粒子シミュレーションやハイブリッドシミュレーションに用いられる。
一般に宇宙プラズマは十分い希薄であり、粒子相互間の衝突はほとんど無視す

ることができる。したがって、本章では衝突項を含まない粒子の運動方程式を考
える。相対論的効果を無視すれば、運動方程式は次式で与えられる。
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ここで、�& �& �& �& �& �はそれぞれ、粒子の速度ベクトル、位置ベクトル、電
荷、質量、電界ベクトル、磁界ベクトルとする。
上の方程式を用いて粒子速度を時間ステップ#�毎に解き進めていく代表的な方

法はいくつかある。それらについて以下説明する。

��� ����� 法
変数 �、� の関数 ��� として、��� の満たすべき微分方程式と初期条件
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を与えて、��� を求める問題を考える。離散的に解くもっとも簡単な方法は、
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から、

���� $ �� % ����	 �� #� ���� 

として計算するもので、����� 法という。しかし、この方法は、後述の方法に比べ
誤差が大きい。

��� 修正 ����� 法
�� から ���� まで積分するとき、����	 �� だけを用いるのではなく、����	 �� と

予測した ������	 ���� を用いると精度が良くなる。この方法は、修正 ����� 法と
いう。予測の方法は、
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と予測値を求め、
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と、���� を求めなおす。
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さらに、４つの予測値を使う方法が、ルンゲクッタ法である。
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と予測値を求め、
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と、���� 求める。
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式 ���� の差分表現は以下のようになる。
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式を見てわかるように、時間�#�における式展開になっている。ただし、�& �は
粒子位置での電界値および磁界値である。この式から ������の値を計算するには
以下のような方法を用いる。
まず、新しい変数として ��と �� を以下のように定義し導入する。
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すなわち、������から電界��で#��
だけ加速を受けた後の速度、および ������

から電界��で#��
だけ加速を受ける前の速度を意味する。これらの変数を用い
て式 ����� を書き換えると以下のようになる。
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この意味は、��から ��へ変化する間に �
�
� ��のローレンツ力によるサイクロ

トロン回転のみが作用するということである。
この式の両辺について ��� % �� との内積をとると ��� � $ ��� �となる。すな

わち、図 ���に示されたように、式 ���

 は ��は ��は大きさが同じで、角度 


だけ回転させたものであることを示す。つまり、式 ����� を#��
分の電界による
加速 
回と、#�分のサイクロトロン回転とに分離したことになる。
詳細は省くが、式 ���

 を整理すると、
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となる。ただし、� $ ���� #����
と定義する。上の式で括弧内を ��とすると、
��から ��への計算は

�� $ �� % �� � � ���
� 

�� $ �� % �� � � ���
	 

ただし、� $ 
� ��� % � � とする。
以上をまとめると、粒子の速度更新には以下の �ステップの計算を行うことに

なる。
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この計算方法を��
���
������法という。
速度がわかれば粒子位置 �は速度 �を時間的に積分することにより得られる。
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一般性を欠くが、以下のような方法もある。式 ����� を成分で書くと、
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これを ������ について解くと、
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となり、時間を進めることができる。
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ここでは、宇宙プラズマを構成する電子、イオンを粒子として扱う電磁粒子シミュ
レーション手法について概説する。

��� 基礎方程式
本シミュレーションコードで用いる基礎方程式は衝突項を含まない粒子の運動

方程式 �式 ���� と式 ���
  および以下に示した"�+,���の電磁方程式である。

��� $ ��	 %
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ここで、�& 	 & �はそれぞれ、光速、電流密度ベクトル、電荷密度を示す。
"�+,���方程式のうち、式 �
�� &式 �
�� は時間 �$�で満足されておれば、それ

以後の時間においては自動的に満足されるので、基本的には式 �
�� & 式 �
�
 だけ
解けばよい。すなわち、シミュレーションシステム内の電界の初期値を求めるた
めには式 �
�� のポアソン式を解く必要がある。また、式 �
�� より、�次元シミュ
レーション方向での磁場の変動は常にゼロである。

��� 粒子モデルの基本概念
前述のテスト粒子解析とは違い、粒子シミュレーションでは、粒子更新による

電流や電荷の変化が電磁界に影響を与え、その影響が粒子にフィードバックされ
る。すなわち、粒子シミュレーションにおいて、プラズマや電磁界の時間空間発展
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dx

S

X

X2dx

図 
��' 超粒子の形状および -��.� /�)���

は粒子の運動方程式と"�+,���方程式を互いに解き進めることによって得られる
わけである。運動方程式と"�+,���方程式を繋げる物理量は電流密度 
と電荷密
度 �であり、これらはプラズマ各粒子の運動を決定する速度 �& �で表される。し
かし、現実のプラズマは、たとえば、デバイ長を単位とする立方体内に非常に多
数の粒子が含まれるため、���0�& 磁気圏プラズマにおいては ��	 � ���程度 、粒
子一つ一つの運動をすべて追跡することは計算機資源から見ても非現実的である。
また、粒子の運動を追跡する場合、粒子軌跡は連続であるため任意の粒子位置に
おいて電磁界が必要となる。
これらの問題を解決するために 123法 �1����)���2
�3��� を用いる。まず、多くの

現実のプラズマ粒子を代表する大きい電荷、大きい質量をもつ超粒子���.��.����)�� 

を考え、この超粒子を多数用いることによりプラズマ環境を再現する。この超粒
子に空間的にある大きさをもたせる方がより現実のプラズマの性質を模擬するこ
とができる。今回は、簡単のため図 
��に示すような長方形形状を採用する。すな
わち、大きさは空間格子点間隔#�をもつとする。
また、超粒子はシミュレーションシステム内で任意の位置を取ることができる。

超粒子に働く電磁界は粒子同士のクーロン力を直接計算するのではなく、シミュ
レーション空間に離散点として定義された空間格子点にその粒子情報（電流、電
荷）を一旦配分し、それらの情報を用いて同じく格子点上で定義された電磁界成
分について"�+,���方程式を用いて更新する。




��� 電磁界定義のための空間格子点 ��
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図 
�
' 整数格子と半整数格子および各電磁界の定義点

上述のように超粒子は点電荷ではなく広がりがあるため、格子点に電荷量を配
分するときには ���� � � � に従って行う。この重み関数 �を ���.� /�)���と呼
び、図 
�� に示す。ただし� �は格子点位置、� は粒子の中心とする。各超粒子
の運動を更新する際には、その隣接する格子点上の電磁界を超粒子位置に内挿し
それを用いて運動方程式を解く。すなわち、超粒子の情報を格子点を介して電磁
界更新に用い、その電磁界を再び粒子更新に用いるのが123法である。粒子の速
度 �および位置 �更新は上述したが、電磁界の格子点での扱いについて以下に述
べる。

��	 電磁界定義のための空間格子点
テスト粒子シミュレーションでは、粒子ダイナミクスが電磁界に影響を及ぼさ

ないため、電磁界を"�+,���方程式で解き進める必要がなかった。しかし、一般
に、超粒子の運動は電流と等価であり、これによりシステム内の電磁界は変動す
る。この超粒子プラズマダイナミクスによる電流の寄与を"�+,���方程式に取り
込み、電磁界を解き進めるには、それらの各成分を時間的、空間的に離散点に定
義する必要がある。これは、"�+,���方程式を差分形式で解くためである。ここ
では、まず空間格子点について説明する。

"�+,���方程式を中心差分で解きするため、シミュレーションシステム内に整数
格子群 �#��� $ �	 
	 �	 ���	 � $ � と半整数格子群 �� % ��
 #�を用意する。図 
�


に示すように ��	 ��	 ��	 � は整数格子点に定義され、その他の電磁界成分は半整
数格子点に定義される。電界成分と磁界成分は互いに入れ子に配置されているが、
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これは、"�+,���方程式を �方向の空間変動のみを考慮した１次元空間で展開し
てみれば理解できる。また、電流密度 ��	 ��	 ��はそれぞれ電界成分��	 ��	 ��と
同じ格子点に定義する。ただし、整数格子、半整数格子とは便宜上の呼び名であ
り、シミュレーションコード内では、電磁界の配列の添え字は整数であるので混
乱しないように注意する。
前章で��
���
������法による粒子速度更新について述べたが、その際に、粒

子位置での電磁界の値が必要となる。粒子位置での電磁界は粒子位置に隣接する

つの格子点上の電磁界成分を用いて内挿することにより求める。ただ、上述のよ
うに電磁界成分は整数格子、半整数格子の二つの格子システムに定義されている
ため、各粒子位置への内挿法はそれぞれ違う。また、粒子位置での電磁界成分を
求める際には、静電的および静磁的ないわゆる“セルフフォース”に注意する必
要がある。以下にそれについて簡単に述べる。
後述するが、静電界成分は電荷密度を用いてポアソン方程式を満たすように得

られる。すなわち、
���

��
$ � �
�	 

が満たされ、��
����� ���
����� $ �� という関係がシミュレーション内で得られる
（簡単のために �� $ �としている。）。見てわかるように、��は半整数格子点での
定義であるため、電荷密度 �は整数格子点で定義される。すなわち、シミュレー
ションシステム内に分布するプラズマ粒子の各電荷量は各粒子に隣接する整数格
子点に線形的に配分され電荷密度 �が得られ、その情報を元に式 �
�	 から半整数
格子点において電界値��が求められる。　
さて、運動方程式を用いて粒子速度を更新する場合は粒子位置での電界値が必

要であるが、これを上に定義された半整数格子点から内挿して求めると正しい電
界値が得られない。たとえば、速度を持たない �粒子をある点におき、上のように
して求めた電界値を用いると粒子位置での電界値は本来ゼロであるべきが、ゼロ
にはならない。これをセルフフォースという。詳細は省くがこのセルフフォースを
回避するには、"�+,���方程式を解くために半整数格子に定義されていた電界値
��を粒子更新の際にはもともとの電荷配分点である整数格子点に再配分し、その
値を用いて粒子位置に電界値を内挿する。すなわち粒子速度更新の際には��
� $

���
����� % ��
����� �
で得られた値を用いて粒子位置に電界値を内挿するとうま
くいく。つまり、セルフフォース回避の原則として、粒子電荷を配分した格子点で
の電界成分を用いて粒子位置での電界成分を内挿することが言える。同じことが
電流密度 � と磁界�についてもいえる。"�+,���式より �次元では��& ��は

��
����� � ��
����� $ ���
�
��

�
�� 
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図 
��' 時間更新チャート
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となり��と ��および��と ��についてもそれぞれ互いに入れ子になる必要があ
るため違う格子点で定義される。しかし、電流密度は粒子情報から直接得られる
ので、粒子速度更新の際に磁界を用いる場合は電流密度が定義された格子点に磁
界を再配置する必要がある。

��� 時間更新チャート
ここでは、電磁界と粒子の時間発展を解き進める手順を概説する。フローチャー

トを図 
��に示す。時間についても空間同様、整数格子群�#�、半整数格子群 ��%
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��
 #�の 
つを用意し、時間的な中心差分に対応させる。

�� 初期のプラズマ分布より各格子点における電界密度 �を求め、ポアソン式を
解き、初期電界を求める。


� 半ステップ、磁界�を解く。

�� � $ �#�における電界�、磁界�が求まったので運動方程式より � $ �� %

��
 #�における各超粒子の速度 �を求める。

�� � $ ��% ��
 #�の速度を用いて粒子位置 �を半ステップ分進める。

	� � $ �� % ��
 #� における各粒子の位置、速度が決まったので後述の電荷保
存法により電流密度 	 を各格子点で計算する。

�� 磁界�を更に半ステップ進める。

�� � $ ��% � #�における電界�を求める。

�� � $ ��% ��
 #�の速度 �を用いて更に半ステップ各粒子の位置を進める。

以上、�ステップ �#� 分、電磁界および粒子ダイナミクスが時間更新される。こ
れらを繰り返し行うことにより、シミュレーションシステム内でのプラズマ現象
の空間・時間発展を解き進めることができる。

��� 電界及び磁界更新ルーチン
電界の時間更新には式 �
�� を用いる。�次元モデルでは、解くべき式は以下の

�式である。

���

��
$ ���

��
�
�� 

���

��
$ ������

��
� ��

��
�
�� 

���

��
$ ��

���

��
� ��

��
�
��� 

また、磁界の時間更新には式 �
�
 を用いる。�次元モデルでは、解くべき式は
以下の 
式である。式 �
�� から��の変動はないので解かない。

���

��
$

���

��
�
��� 

���

��
$ ����

��
�
��
 




��� 電荷密度ルーチン ��

∆x-
2

∆x-
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∆x ∆x
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xp
Xi Xi+1

b a
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a = xp - Xi

b = Xi+1 - xp

   = ∆x - a

図 
��' 4��� ,������
� ������ �
 )��.���
� )����� ��
���*�

ただし、図 
��の時間更新チャートであるように、磁場は運動方程式を解く際に電
界と時間ステップをあわせる必要があるため、#��
分を 
回解くことになる。

��� 電荷密度ルーチン
電界の初期値を得るためには、シミュレーションのはじめにポアソン方程式を

解く必要がある。これにより、初期の電荷密度分布による電界分布が得られ、こ
の電界を用いて、上述の電界更新を行う。ポアソン方程式にはシステム内の電荷
密度 �が必要であるが、これを求めるにはシステム内に存在する超粒子の電荷を
各格子点に配分する必要がある。基本的には図 
��に示した重み関数�を用いて各
格子点に電荷を配分する。その具体的な方法を図 
��に詳しく示す。超粒子の形は
幅#�の長方形とし、その中心位置を ��とすると、もし�� � �� � ����なら格子
点��と����に粒子の電荷 �は配分される。すなわち、���� ��� �#�は ������ 

に配分され、������ � �� �#�は ���� に配分される。
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xp

xp

(n+1) ∆t

Xi Xi+1

qB

qA

       1        qA - qBJi+- = -

       

2
             ∆t

(n+1/2) ∆t

n ∆t

図 
�	' 3����� )�
���5����
 ������ �
 )��.���
� )����
 ��
���* ' 3��� �

��� 電流密度ルーチン
電流密度 	 は各超粒子の速度と位置から計算する。"�+,���方程式の差分形か

ら、��と ��は半整数格子点、��は整数格子点に定義されているが、簡単のため、
一旦、半整数格子点で電流密度	 を計算し、その後 ��を整数格子に再配置するこ
とにする。
��と ��については電荷密度の計算と同じ方法で超粒子のモーメントを隣接する


つの格子点に線形重みで分配する。��については電荷保存法を用いる。これは
システム方向の電荷の連続式

��

��
%� � 	 $ � �
��� 

を常に満たすように電流を求める方法である。差分形で書くと、

����� � ��� $ ���
�����
����� � �

�����
�����  

#�

#�
�
��� 

となる。
超粒子が �タイムステップ #�の時間に �空間格子 #�以上移動しない場合、

������
� を計算するには、
つの場合が考えられる。まず第一の場合は、図 
�	に示




��� 電流密度ルーチン ��
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xp

(n+1) ∆t
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       1      qA Ji+- = -

       

2      ∆t

Xi+2

       3       - qBJi+- = -

       

2          ∆t
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図 
��' 3����� )�
���5����
 ������ �
 )��.���
� )����
 ��
���* ' 3��� 


したように粒子が同じ格子内の移動であり、第二の場合は、図 
��にあるように 


つの格子が関係する場合である。
第一の場合は、格子点������における電流値������は時間ステップ#�内に������

の点を通過した電荷量を計算することで得られる。すなわち、

������ $
�
 � ��

#�
�
��	 

となる。ただし、�
& ��は次のように与えられる。

�
 $ �
�� � ����#� 

#�
	 �� $ �

�� � ����� % � #� 

#�
�
��� 

また、第二の場合は、粒子運動が������と������の 
つの格子点での電流に寄
与する。すなわち、

������ $
�

#�

	 ������ $ � ��
#�

�
��� 

となる。ただし、図では、粒子速度が正を仮定したが、負の速度を持つ場合、式
�
��	 と式 �
��� の左辺に��をかける必要がある。以上の方法は、既に公開され
ている��"16�シミュレーションコードにおいて、オリジナルな電流ルーチンと
して実装されている。�"�������� �
� 6����& 3��.���� �.�)� .����� .�*��)�'

���������
 ��)��0��& 7���� 1�8�& .��� 
�& ���� 
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��� 電界補正
上述の電荷保存法による電流計算を用いれば、基本的にポアソン方程式が満た

されるので電荷密度と静電界の関係は正しく解かれていることになる。　しかし、
電流密度を電荷密度と同じ方法（各時間ステップにおいて粒子のモーメントを隣
接する 
つの格子点に配分することにより電流密度を計算）で求めた場合、電荷
の連続の式が常に満たされているとは限らない。この場合、ある一定時間間隔で
ポアソン方程式を陽に解くことにより静電界を補正することが必要になる。ただ
し、�次元モデルの場合、��は静電界のみであり、式 �
�	 の解が��そのものに
なる。また、電荷密度から初期の電界分布を求めるためにも以下のポアソン方程
式を解く必要がある。

��� $ �� �
��� 

差分形式では次にように表される。

���

���
$

������ � 
���� % ������ 

�#� �
�
��� 

ポアソン式の解法はさまざまなものが提唱されているが、空間的に周期境界のも
とでは、高速フーリエ変換を用いた方法が一般的である。すなわち、電荷密度分
布 ���� をフーリエ変換し ��
� を求め、次式から波数空間 
において電位 ��
� 

を求める。
��

���
� $ ��
� �
�
� 


� $ 
 ��! ' � $ �	 
	 ����	 ���
であり、

�� $
��
�9�#+�
 

#��

�
�
� 

得られた電位��
� を逆フーリエ変換することにより各格子点での���� 、すなわ
ち ��を求める。電界値��
����� は次式から求まる。

��
����� $
�� � ����

#�
�
�
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第�章 ハイブリッドシミュレーショ
ン法

	�� 定式化
電子とイオンの特徴的な運動時間、空間を比べた場合、はるかに、電子の方が、

速く、短い。そこで、注目するプラズマ現象が、イオンによって主に生じている
と分かっている場合、すなわち、現象の時間と空間スケールがイオンの運動程度
と分かっている場合は、電子の運動論的効果を陽に解かないシミュレーションを
行うことができる。この手法を、ハイブリッド �:;��2< 法と呼ぶ。そこでは、
イオンを粒子で扱う一方、電子を電荷中性を瞬時に行う流体として扱う。瞬時に
行うためには、慣性を持ってはならないので電子の質量は０となり、光速は無限
大となる。式で表すと、

�� $
�
�	���

�� ���� 

"�

��
� � ���
 

�

#

� � ���� 

まず、ハイブリッド法で用いる方程式系を導入するために"�+,��� 方程式 �
��

� 
�
 と次の電子流体要素に対する運動方程式の規格化を行う。

����
���

��
$ �$���� % �� �� ��
� ���� 

規格化定数は、

速度 � � =� #

時間 � � 
�

��

長さ � � =� ��
��

磁場 � � =� ��

電場 � � =� #
��
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密度 � � =� ��

圧力 % � =%
��

�

���

を用いる。"�+,��� 方程式 �
�� � 
�
 を規格化すると、

� =�

�=�
$ �

�

#

 �� =�� =� � =	 ���	 

� =�

�=�
$ � =�� =� ���� 

となり、式 ���	 において、式 ���� を満足し、かつ、左辺が有限値になるためには、

=�� =� � =	 $ � ���� 

でなければならない。
電流は、

=	 $
�

=�� =�� ���� 

$ =��
=�� %

�
���

=�� =�� ���� 

と定義されるため、電子の流体速度は、式 ���� を使って、

=�� $ �=	 ��
���

=�� =�� � =�� $
�
=��

�
�
���

=�� =�� � =�� =� ����� 

と求まる。
次に電子流体の運動方程式は、

� =��

�=�
$ ��

="�

=��
 � =� % =�� � =� %

�


 =��

=� =%� ����� 

となり、式 ���
 を満足し、かつ、左辺が有限値になるためには、

=� % =�� � =� %
�


 =��

=� =%� $ � ����
 

でなければならない。
したがって、電場は、

=� $ � =�� � =� � �


 =��

=� =%� ����� 

と求まる。
つまり、電子の流体速度と電場の値は、時間積分を行い求めるのではなく、各時



��
� タイムチャート 
�

間で、他の変数から求める。
電子の圧力勾配は、状態方程式から求める。例えば、断熱変化を仮定した場合、比
熱比 &を用いて

=%�
=��
��

$ �'�(�� ����� 

から求める。イオンの各粒子については、以下の運動方程式を解く。

� =��
�

�=�
$ �

=)�

="�

 � =� % =��
� � =� ����	 

まとめると、解き進めて行く方程式は、�以降、～記号を省略 

��

��
$ ���� ����� 

� $ ��� �� � �


��
�%� ����� 

�� $
�

��
�
�
���

��� � ���� ����� 

�� $
�
���

�� ����� 

���
�

��
$ �

)�

"�

 �� % ��
� �� ���
� 

である。
�、�、�、
 �、� は、空間上に定義したグリッド上でのみ定義される。また、
!����1����)�� 計算の時のような半グリッドずらした場所での変数の定義は無い。

	�� タイムチャート
まず、時間 �� $ �#� で、粒子の位置 ��、グリッド上での磁場 ���* 、イオンの

密度 ��
� �* が分かっていて、������ $ ��% ��
 #� で粒子の速度 ������ が分かっ

ていたとする。ここで、> は、グリッド位置 *#� を表すとする。���.�/��� 法でイ
オン粒子を時間的に進めるため、イオン粒子の位置と速度の情報は、時間的にず
れて定義する。

-7�1 �' � $ �� でのグリッド上でのイオンフラックス + �
� �* を求める。

+ �
� �* $ ������

�
�

���� ���*  ���
� 
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V
#
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#
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t = dt( +1/2)n

t = dtn

t = dt( +3/2)n

t = dt( +1)n

図 ���' 時間の進め方。○の時間での値は既知。●の値は、○から時間を進めるこ
とによって求める。△の値は、他の量から求める。
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-7�1 
' 粒子の位置を進める。

���� $ �� % ������#� ���

 

-7�1 � ? �' � $ ���� でのグリッド上でのイオンの数密度とフラックスを求
める。

�����* $
�
�

������ ���*  ���
� 

+ ���
� �* $ ������

�
�

������ ���*  ���
� 

-7�1 	' � $ ������ でのイオンの数密度、速度、イオン電流を求める。

������ $ ��� %���� �
 ���
	 

� ����� $ �+ �
� % + ���

�  ��
�
�����
�  ���
� 

	����� $
�
���

)��
������ ����� ���
� 

-7�1 �' 磁場を進める。後述の有理ルンゲクッタ法を使う。
��

��
$ ���� ���
� 

-7�1 � ? �' 粒子の速度を進める。

������ � ������

#�
$ �

���� %
������ % ������
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ここで、

�
�����* $

�
�

���������� ���*  ����� 

�
�����* $

�
�

���������� ���*  ����� 

は、粒子の存在する位置での電場と磁場の値である。
また、���� は、

���� $ �� ���
� ����� � �


��

�%� ����
 

$ � �

��
�
�
���

)��
���
� � ���

� ������� � �


��
�%� ����� 

から求め、# ���
� は

� ���
� $ ,��

�����
� % ,��

�����
� % ,��

�����
� % ,��

�����
� ����� 

,� $ 		�
�	 ,� $ �	��
�	 ,� $ ���
�	 ,� $ ���
� ����	 

から求める。
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	�	 有理ルンゲクッタ法 �
������� 
���� ����� �������

@��8�)0 によって提案された非線形のルンゲクッタ型積分法で、

��

���
$ ���	 �

�

 ����� 

のような時間に関する微分方程式においては、次式で表される。�２次精度の場合 

�� $ ���	 �
�

 ����� 

�� $ ��� %
#�

�



��	 �

�

% #�
�

 ����� 

�� $ 
�� � �� ����� 

全グリッドでの値の内積和を以下のように求め、

-�� $
�
�

���	 �� ����� 

-�� $
�
�

���	 �� ����� 

-�� $
�
�

���	 �� ����
 

これらを使って、#�
�

時間を進める。

���� $ ���� % #�
� 
-���� �-����

-��

����� 

この時の時間ステップ #�
�は、シミュレーションの時間ステップ#� とは独立であ

るため、必要に応じて細かくとることができる。�例：#�
�

$ #��� 
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基本課題

本シミュレーションスクールでは実習課題を用意している。本来なら、宇宙空間ま
たはチャンバー装置内でしか再現できないようなプラズマ現象を計算機内でバー
チャルに実現することができ、その解析を自ら行うことにより、シミュレーション
の有用性について実感していただけると幸いである。特に、粒子モデルでは、ビー
ム�プラズマ不安定性および衝撃波現象に関する基本課題を用意しており、各受講
者はそれぞれの端末で基本課題に関するシミュレーションを実体験することがで
きる。これらの基本課題は、非常に古典的な問題であるにもかかわらず、それぞ
れの現象の時空間発展はプラズマパラメータに大きく依存する。このため、観測、
理論、シミュレーションを含めて現在でも非常にホットで最先端の研究テーマで
もある。自習時間では、基本課題を元にした応用課題に是非取り組んでいただき
たい。

��� 電磁粒子シミュレーションで解く課題

����� ビームプラズマ不安定性

近年、衛星を用いた地球磁気圏プラズマ波動観測により様々なプラズマ波動が
観測されている。これらのプラズマ波動の形成要因として考えられているもの１
つにビームプラズマ不安定性がある。ビームとは、背景プラズマに対して相対速
度を持ったイオンや電子の流れのことを示す。ビーム成分と背景プラズマとの相
互作用は非常に古典的な問題であり、理論的には ����年代から研究されてきてい
る。その後、計算機シミュレーションによりその線形過程および初期の非線形過
程について様々な研究が行われてきた。近年では、静電孤立波の衛星観測に伴い、
ビーム�プラズマ相互作用の非線形発展に関する計算機シミュレーション研究が注
目を浴びている。
このような研究背景の中、本基本課題では、特に不安定性の線形発展から非線

形過程にいたるプロセスに着目し、背景プラズマにビームとなる成分を加えたモ
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図 ���' 電子及びイオンの速度分布とビーム不安定性

デルを用いて、計算機シミュレーション実習を行う。実際のビームプラズマ不安
定性では背景プラズマとビームの熱速度、質量比、密度比またはビームの相対速
度などにその発展は大きく依存する。しかし基本的には電子�電子間、電子�イオン
間そしてイオン�イオン間での生じる不安定性の組み合わによりある程度理解する
ことができる。そこで今回、基本課題として、電子またはイオンのビームが１つ
だけ存在する場合に生じる電子�電子間、電子�イオン間そしてイオン�イオン間の
不安定性の特徴的な場合について計算機シミュレーションを行ってみる。

背景プラズマと電子ビーム

静止系において背景プラズマ �電子とイオン が存在し、加えてビーム電子が存
在する場合について考える。この時起りうる不安定性としては、�� 背景電子�ビー
ム電子間の電子二流体不安定性と �
 背景イオン�ビーム電子間の ��
���
不安
定性の２種類が考えられる。どちらの不安定性が支配的になるかは、各成分の熱
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�

速度、質量比、密度比またビームの相対速度などにより決まるが、本基本課題で
は背景電子の熱速度にのみ注目することにする。

	 3��� �� ' 背景電子の温度が低い場合 �電子二流体不安定性 

背景電子の温度が低い場合、背景電子�ビーム電子間の不安定性である電子
二流体不安定性が支配的である。電子二流対不安定性とは電子�電子間で相
対速度を持つ場合に生じる静電的な不安定性で、各電子が自らの運動エネル
ギーを電場に与えより安定した速度分布に落ち着こうとして生じる。背景電
子の温度が低い場合の代表的な速度分布を図に示す。図をみて分かるように
背景電子の他に背景イオンも存在するが、電子の方がイオンより軽く動きや
すいためにイオンより先にビーム電子と電子二流対不安定性を起し安定な状
態に落ち着こうとする。課題としては、線形分散解析を予め行いどのような
波数の波動が最も成長しやすいかを確認後、その波動を再現できるようなシ
ミュレーションシステム・パラメータを選択し実際にシミュレーションを行
う。シミュレーション結果を解析して、最大成長率をもつ波数、時間的な波
動成長率などを理論値と比較する。

	 3��� �
 ' 背景電子の温度が高い場合 ���
���
不安定性 

背景電子の温度が高い場合、電子二流体不安定性は小くなり背景イオン�ビー
ム電子間の ��
���
不安定性が支配的になる。��
���
不安定性とは電
子�イオン間で相対速度を持つ場合に生じる静電的な不安定性で、電流駆動
型 �3����
�����5�
 不安定とも言われる。基本的にはイオン音波モードから
静電波が成長するが、不安定性を起すイオンと電子の温度がその波の成長に
関係する。すなわち、イオン温度と電子温度より決まるイオン音速がイオン
の熱速度より小さい場合、イオンによるランダウ減衰が起り波の成長は妨げ
られる。背景電子の温度が高い場合の代表的な速度分布を図に示す。図をみ
て分かるように背景電子は熱速度が高く速度分布が広がっていて安定してい
るので背景電子�ビーム電子間の不安定性は小さい、しかし、背景イオンは
熱速度が小さく、系全体から見た場合、背景イオンとビーム電子は不安定な
状態にある。よって ��
���
不安定性が起こり安定な状態に落ち着こうと
する。

この場合についても前のケース同様の解析を行い、シミュレーション結果の
解析を行う。
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背景プラズマとイオンビーム

次に、静止系において背景プラズマとして電子とイオンが存在し、加えてビー
ムイオンが存在する場合について考える。この時は上に述べた��
���
不安定性
と背景イオン�ビームイオン間のイオン二流体不安定性の２種類が考えられる。こ
こでも背景電子の熱速度にのみ注目して、それぞれの不安定性が支配的になる２
つの場合について計算機シミュレーションを行ってみる。

	 3��� �� ' 背景電子の温度が低い場合 ���
���
不安定性 

背景電子の温度が低い場合、背景電子�ビームイオン間の��
���
不安定性
が支配的である。この時の代表的な速度分布を図に示す。この場合、系全体
で見た場合、背景電子&イオンそしてビームイオンのすべてが不安定な状態
にある。しかし電子はイオンより軽く動きやすいためよ早く安定な状態に移
行しやすい、よって、背景イオン�ビームイオン間の不安定性より背景電子�

ビームイオン間の��
���
不安定性の方が早く起こり安定な状態に落ち着
いてしまう。

この場合についても前のケース同様の解析を行い、シミュレーション結果の
解析を行う。

	 3��� �� ' 背景電子の温度が高い場合 �イオン二流体不安定性 

次に背景電子の温度が高い場合は、��
���
不安定性が弱まり背景イオン�

ビームイオン間の不安定性であるイオン二流体不安定性が支配的となる。イ
オン二流体不安定性とは、イオン�イオン間で相対速度を持つ場合に生じる
静電的な不安定性で、各イオンが自らの運動エネルギーを電場に与えより安
定した速度分布に落ち着こうとして起る不安定性である。この場合の代表的
な速度分布を図に示す。見て分かるように背景電子は熱速度が大きく速度分
布が広がっており、系全体見た場合ビームイオンと背景電子の不安定性は小
さい。よって背景イオンとビームイオン間のイオン二流体不安定性が一番強
くなる。イオン二流体不安定性は他の 
つの場合と違い両方イオンなので最
も成長率が小さく、波の成長に時間がかかり長い計算時間を要する。

��� ハイブリッドシミュレーションで解く課題
本スクールでは、ハイブリッド法で解析されるプラズマ現象として、イオン二

流体不安定性と !��� "��� の衝撃波を扱う。また、簡単のために空間１次元 ��

方向の変化のみ の仮定の基で行う。粒子の速度は３成分を扱う。
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図 ��
' イオン二流体不安定性に関する分散曲線。実線が周波数、破線が成長率を
表す。時間と長さは、それぞれプロトンのサイクロトロン角周波数 A� とプロトン
の慣性長 #
�A�で規格化してある。A� よりもゆっくりした波動で、成長率も静電
的波動に比べて小さい。

����� イオン二流体不安定性

背景イオンと電子が存在する系に、イオンビームが加わる場合を考える。先の
粒子コードによって解析した静電的な波動の励起に加え、図 ��
の分散関係に見ら
れるような、電磁的な波動も励起される。しかし、この電磁的な波動は、静電的な
波動に比べ波の成長率が極端に小さいため、粒子コードを長時間走らさなければ
ならない。昨今のコンピューターの能力では、この長時間の計算を行うことは可
能だが、この現象がイオンの時間スケールで生じる現象と分かっているため、ハ
イブリッドコードで解析することが可能であり、また短時間で行える。宇宙空間
でこのような現象が人工衛星によって直接観測される場所としては、地球の定在
衝撃波 ���, -��)9 近傍や、地球磁気圏尾部のプラズマシート境界などがある。
そこでは、背景プラズマに対し、磁力線に沿った方向にイオンピームが流れてい
る現象が観測され、同時に電磁的な波動も観測されている。

問題

�� 分散曲線の図で、
 . � の波 �共鳴波と呼ばれる の方が、
 / � の波 �非共
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図 ���' 波が成長してきた時点での、� � # � 位相空間図 �左上 、磁場の垂直２成
分の空間変化図 �左下 とそのスペクトル図 �右 。空間的に左周りの波が励起され
ている。

鳴波 より成長率が大きいが、どのような時に逆転するかB

�
 ビームの速度や密度を変えて行くと、励起される波のモードがどのように変
化するかB

�� テスト粒子計算の時に行った位相捕捉現象が見られるだろうかB

����� ���� 	
�� 衝撃波

衝撃波面での散逸現象

粒子間の衝突が無視できる宇宙空間においては、衝撃波の存在は自明ではない。
なぜなら、衝撃波面での散逸現象が粒子間の衝突に起因しないからである。如何
にして、運動エネルギーが熱エネルギーに変換されているのであろうか。その散
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図 ���' 人工衛星によって観測された衝撃波の例 �左：磁場強度 とハイブリッド法
で計算された衝撃波 �右上：磁場強度、右下：位相空間図 。

逸の様子を、シミュレーションで理解することを目標とする。
問題

�� ��
9�
��:���
��� の関係式を使って、下流での熱量を求める。

�
 衝撃波の法線方向 �� 軸 と磁場の成す角 �-��)9 角 を変えることにより衝
撃波の性質が変わることを確認する。

�� 衝撃波面から、上流方向へ移動する粒子があることを確認する。

�� -��)9 角が小さいとき �/ �	度 、上流で、イオン二流体不安定性が見られ
ることを確認する。

衝撃波面での加速現象

衝撃波は、また、プラズマ粒子の加速器として働くことが良く知られている。し
かし、全ての粒子を加速しているわけではない。加速される粒子とされない粒子
は、何が違うのであろうか。
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図 ��	' 準平行衝撃波で、上流からやって来た粒子が衝撃波面で止められ加速され
て行く様子を示す �ハイブリッド法による計算結果から 。▲点は、
 A� 時間毎に
打ってある。



�	

参考文献

C�D ��������& 3� �& �
� 4� �� E�
���
& ������ ����	
� �	� 
���
��� �	�
���	��&

")3���,�:���& ���	�

C
D :�)9
�*& �� @�& �
� F� @� ����,���& ����
��� �	�
���	�� 
�	�� ����	
���&

")G��,�:���& �����

C�D "��������& :�& �
� ;� 6����& ����	
�� �	�
���	��� �� ���
���������	
 �����

��� ���	� ����	
��	��� �� ���
� �������� ����
��� �	�
���	��� �� ���
� �������&

��� 8* :� "�������� �
� 7� -���& 7���� 1�8� �
� ������ 3��& ���	�

C�D "��������& :�& �
� ;� 6����& ����
��� ���
� ������ ����	
�� �	�
���	��

��
��	�
�� ��� ��������& ��� 8* :� "�������� �
� ;� 6����& 7���� 1�8�& �����

C	D (������
��& F� �
� 6� ��
���
& �������� )����� )�
���5����
 /�� ��)�� ���)����

���
���) H��� ���5���& ����
��� ����	
� ����
�	
��	��� ��& �������& ���
�

C�D @������ :� 1����& -��� 4� 7��9���9*& @������ 7� (�������
�& ����
 1� !��

��*

�
���	
�� ��
	��� 	� �� 　技術評論社、����年

C�D !�>�����& "�& 2
���8������� �
 ��� "��
���.���� (���)��* -���� E�*��& 1�<

������& 2
������� �/ -.�)� �
� 4����
����)�� -)��
)�& ��
���,�& F�.�
& ���


粒子モデルの基本実習課題に関連する参考図書も以下にあげる。
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付 録� クーラン条件

"�+,���方程式を空間的に中心差分、時間的にリープフロッグで解き進めるには、
上述にあるように格子間隔#�と時間ステップ#�が以下の関係を満足する必要が
ある。

#� . �#� �4�� 

ここで �は光速である。これをクーラン条件という。このクーラン条件は光速波動
の数値分散関係から簡単に導かれる。今、0��	 � を波数 
周波数 1を持つ波の成
分と仮定する。

0��	 � $ 0� �+.��
�� �1� �4�
 

空間的な中心差分を考えると
#0

#�
$

0��� % #��
	 � � 0��� �#��
	 � 

#�
�4�� 

$
�+.��9#+�
 � �+.���9#+�
 

#�
0���	 � �4�� 

$ �
��
�9#+�
 

#��

0���	 � �4�	 

この#0�#� を空間変微分 �0��� と比較すると、波数 
は以下のように変数�

に置き換えて考えることができる。

� $
��
�9#+�
 

#��

�4�� 

同じように周波数 1についても変数Aに以下のように置き換えることができる。

A $
��
�1#��
 

#��

�4�� 

光速モードの波動分散関係は 1� $ ��
�であり、
と 1を上の�とAで置き換
えるとA� $ ����となる。最大波数 
��� $  �#�を考えた場合、

��
��1#��
 $ �
)#�

#+
 � �4�� 

という関係が得られる。もし �#��#� / �なら、1は複素数となり数値不安定を
示す。このため、最初に示したクーラン条件が満たされてないといけないことに
なる。�#��#� $ �の場合、臨界安定である。
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付 録� マクスウェル分布を与える
方法

ここでは、� / � / � の一様乱数から、ガウス乱数を生成する方法の一例を述べ
る。粒子シミュレーションでは、初期の粒子の速度分布をマクスウェル分布で与
えることが多いためである。
一様乱数 �

2�� �� $

�
�� � / � / �

� �����
���� 

を任意の関数で 3�� に変換した場合、3�� の確立密度 % �3 は、


% �3 �3
 $ 
2�� ��
 ���
 

となり、

% �3 $ 2�� 

					���3
					 ���� 

と求まる。これを、２次元に拡張すれば、

% �3�	 3� �3��3� $ 2���	 �� 

					����	 �� ��3�	 3� 

					 �3��3� ���� 

となる。
� � �
 は、�の 3 についてのヤコビアンである。
もし、% �3 がガウス分布を表す確立密度関数になれば、目的が達成される。
２次元のガウス分布は、

��� $
�

 ���� �+.����� % ���

����  ���	 

であるから、式 ���� のヤコビアンが、					����	 �� ��3�	 3� 

					 $



�

 ��� �+.�� 3��

����  
� 


�

 ��� �+.��

3��
����  

�
���� 
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となる変換関数があれば良い。
それは、

3� $ #� $ ���
�
� �
��� )���
 �� ���� 

3� $ #� $ ���
�
� �
��� ��
�
 �� ���� 

である。よって、２つの ��	 � の範囲の一様乱数 ��、�� が求まれば、式 ����&��� 

の変換により、１組の２次元ガウス分布が求まる。


