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はじめに

流体・磁気流体方程式を差分近似にもとづいて数値的に解くことにより、さまざまな宇宙現象
をシミュレートすることができる。このテキストでは、シミュレーションの初心者を対象とし
て差分法の基礎から風上差分にもとづく磁気流体方程式の解法に至るまでを解説した。各章の
内容は以下の通りである。

• １章：差分法の基礎　（松元亮治）
線形及び非線形の１変数の波動方程式を例にして差分法の基礎を学ぶ。差分のとりかた
や時間きざみの選び方によっては数値的な不安定性が生ずることを示し、安定性のため
に満たすべき条件について解説する。また、数値的な安定性に優れ、数値振動を起こさ
ない解法として１次精度の風上差分を導入する。２次精度以上の解法では解の単調性が
維持されず数値振動が発生することを示し、単調性を維持するための流束制限関数につ
いても解説する。

• ２章：システム方程式の解法　（富阪幸治）
流体・磁気流体力学の方程式系にあらわれる２変数以上の非線形連立偏微分方程式の解
法について解説する。これらの方程式が波動方程式の集合であることを示し、特性線お
よび特性線に沿って一定に保たれるリーマン不変量について解説する。これらの準備を
した上で、初期に圧力、密度などに不連続な分布を持つ気体の時間発展を解析的に求め
る方法を説明し、この手法を衝撃波管に適用する。

• ３章：流体および磁気流体力学方程式の風上差分　（花輪知幸）
システム方程式に対して風上差分を適用する方法について解説する。最初に線形のマク
スウェル方程式を例にして４変数の場合の風上差分の方法を説明し、続いて流体力学・
磁気流体力学方程式にも風上差分を適用する。流体・磁気流体方程式では特性速度が場
所によって変化するため適切な平均の取り方が問題となる。平均量の計算方法の例とし
てRoe平均についても紹介する。

シミュレーションサマースクールでは、このテキストを用いた講義と、宇宙流体・磁気流体シ
ミュレーションの統合ソフトウェアCANS（Coordinated Astronomical Numerical Softwares)

を用いた実習がセットになっている。数値不安定性の発生や衝撃波の伝播など、講義で習った
内容を実際にシミュレーションを行って確認することにより、理解が深まるであろう。
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第1章 差分法の基礎

松元亮治 (千葉大理)

この章では流体・磁気流体方程式を差分法を用いて数値的に解く際に必要になる基礎的事項に
ついて解説する。波の伝播をあらわす線形移流方程式や非線形の Burgers方程式をとりあげ、
差分解法の数値的な安定性や数値振動について論じる。特に、数値的な安定性に優れ、非物理
的な数値振動を起こさない差分法として風上差分法を紹介する。

1.1 偏微分方程式の型
流体・磁気流体現象をはじめとする自然現象の多くは、以下の 2次元 2階偏微分方程式で記

述される。

a
∂2u

∂x2 + b
∂2u

∂x∂y
+ c

∂2u

∂y2 + d
∂u

∂x
+ e

∂u

∂y
+ fu + g = 0. (1.1)

この方程式は以下のように分類できる。

条件　　　　　　　　 型　　　　　　　 　　　　　　例　　　

b2 − 4ac > 0 双曲型
∂2u

∂t2
− c2 ∂2u

∂x2 = 0 波動方程式

b2 − 4ac = 0 放物型
∂u

∂t
= κ

∂2u

∂x2 熱伝導方程式

b2 − 4ac < 0 楕円型
∂2u

∂x2 +
∂2u

∂y2 = 4πGρ ポアソン方程式

波動方程式、熱伝導の式、ポアソン方程式は、それぞれ双曲型、放物型、楕円型偏微分方程
式の例になっている。以下では主として双曲型方程式を例にして、差分近似にもとづく偏微分
方程式の数値解法を解説する。



8 第 1章 差分法の基礎

1.2 差分近似
変数 uが空間座標 x, yに依存するという 2次元問題を考える。

x

x

y

∆
∆y

(i, j)(i-1, j) (i+1, j)

(i, j+1)

(i, j-1)

図 1.1: 2次元メッシュの図

2次元空間を図のような格子に区切り、各格子点の座標を (xi, yj)とする。格子間隔は x方向
が∆x、y方向が∆y とする。xi±1 = xi ±∆x、yj±1 = yj ±∆y である。以下、格子点番号 (i, j)

を用いて ui,j = u(xi, yj)のように略記する。
着目している点 (xi, yj)のまわりでテイラー展開すると、

ui+1,j = u(xi + ∆x, yj) = ui,j + ∆x

(
∂u

∂x

)
i

+
∆x2

2!

(
∂2u

∂x2

)
i

+
∆x3

3!

(
∂3u

∂x3

)
i

+ ...　 (1.2)

ui−1,j = u(xi − ∆x, yj) = ui,j − ∆x

(
∂u

∂x

)
i

+
∆x2

2!

(
∂2u

∂x2

)
i

− ∆x3

3!

(
∂3u

∂x3

)
i

+ ... (1.3)

式 (1.2)から式 (1.3)を引くと

ui+1,j − ui−1,j = 2∆x

(
∂u

∂x

)
i

+ O(∆x3) (1.4)

したがって、
(

∂u

∂x

)
i

=
ui+1,j − ui−1,j

2∆x
+ O(∆x2) (1.5)

すなわち、(i, j)点における uの x方向の微分係数 (∂u/∂x)iが∆x2の誤差を含む近似のもと
で (∆xについて 2次の精度で)以下のように求まる

(
∂u

∂x

)
i

=
ui+1,j − ui−1,j

2∆x
(1.6)
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これを中心差分の式と言う。
同様にして、∆xについて 1次の精度で以下の差分近似式が得られる。

(
∂u

∂x

)
i

=
ui+1,j − ui,j

∆x
(前進差分) (1.7)

(
∂u

∂x

)
i

=
ui,j − ui−1,j

∆x
(後退差分) (1.8)

式 (1.2)と式 (1.3)を加えると

ui+1,j + ui−1,j = 2ui,j + ∆x2

(
∂2u

∂x2

)
i

+ O(∆x4) (1.9)

したがって、
(

∂2u

∂x2

)
i

=
ui+1,j − 2ui,j + ui−1,j

∆x2
+ O(∆x2) (1.10)

これより、uの xに関する 2階微分の係数 (∂2u/∂x2)iを∆xについて 2次の精度で以下のよ
うに近似することができる

(
∂2u

∂x2

)
i

=
ui+1,j − 2ui,j + ui−1,j

∆x2
(1.11)

同様に、
(

∂2u

∂y2

)
j

=
ui,j+1 − 2ui,j + ui,j−1

∆y2
. (1.12)

1.3 線形スカラー移流方程式の差分解法

1.3.1 １次元線形スカラー移流方程式

流体・磁気流体方程式の本質は波の伝播にある。この部分だけを取り出して次のような方程
式を考える。

∂u

∂t
+ c

∂u

∂x
= 0 (1.13)

ただし、cは定数で c > 0 とする。この方程式は、スカラー量 uの空間分布が、一定の速度 c

で伝播することをあらわす波動方程式である。
方程式 (1.13)の厳密解は

u(x, t) = u(x − ct, 0) (1.14)
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u

x

u2

u1

u

x

u2

u1

t = 0

c

t > 0

c

図 1.2: 1次元スカラー移流問題の初期条件と時間発展

である。これは、時刻 t > 0におけるスカラー量 uのプロフィールは t = 0のスカラー量 uの
プロフィールが形を保って ctだけ平行移動した形になることをあらわす。
いま、図 1.2のように初期に x ≥ 0 で u = u1、x < 0 で u = u2 のように x = 0で不連続な

分布を考えてみると t > 0 での厳密解は右図のような形になる。

1.3.2 FTCSスキーム

1次元線形スカラー移流方程式 (1.13)を時間について現在の時刻 tnと∆t後の時刻 tn+1 =

tn + ∆tの間で前進差分、空間については中心差分をとって差分化すると次式を得る。ここで、
un

j = u(xj, tn) である。

un+1
j − un

j

∆t
+ c

un
j+1 − un

j−1

2∆x
= 0 (1.15)

このような差分のとり方を FTCSスキーム (Forward in Time and Centered Difference in

Space)と言う。これを整理すると、

un+1
j = un

j − 1

2
ν(un

j+1 − un
j−1) (1.16)

ここで、νは次式で定義される数であり、クーラン数と呼ばれる。

ν ≡ c
∆t

∆x
(1.17)

式（1.16）の右辺は時刻 tnでの値、左辺は時刻 tn+1 = tn + ∆t での値だけで書けている。し
たがって、時刻 tnでの各格子点での値がわかっていれば直ちに 1タイムステップ後 (tn+1)の
各格子点での値を計算することができる。このような解法のことを陽解法と言う。FTCSス
キームにおける変数の依存関係を図示すると図 1.3のようになる。矢印は時刻 tn+1の白丸の点
の値を計算するのに時刻 tnの黒丸の格子点の値を使うことを示す。

1次元波動伝播のシミュレーションを行うアルゴリズムは一般に次のようになる。

1. 各メッシュ点の座標値 xjをセットする (メッシュ生成)
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n+1

t

n

x

boundary

j-1 j j+1

図 1.3: FTCSスキームにおける変数の依存関係

2. 各メッシュ点の初期値 uj(t = 0)をセットする (初期条件)

3. 時刻 tが、あらかじめ決められた終了時刻 tendに達するまで、あるいは決められた回数だ
け、以下を繰り返す

(a)左右の境界を除く各格子点について∆t後の値を差分式にもとづいて計算する (時間積
分)。たとえば FTCSスキームの場合には計算式 (1.16)を用いる。

(b) 左右の境界の値を境界条件から決める。たとえば隣接点と同じ値を入れる (境界条件の
適用)

(c) 時刻を∆tだけ進める

40 45 50 55 60
x

-1

0

1

2

3

u

0 20 40 60 80 100
x

-1

0

1

2

3

u

図 1.4: 左図：FTCSスキームで、初期値として、j = 1, ..., 50に対して u = 1、j = 51, ..., 100

に対して u = 0とし、クーラン数 ν = c∆t/∆x = 0.25 で 1ステップ、2ステップ、3ステップ 1

計算したときの uをプロットした図。右図：50ステップ、100ステップ計算したときの u をプ
ロットした図。

FTCSスキームを用いて１次元線形スカラー移流方程式を解いた結果を図 1.4に示す。波は
形を保って伝わらずに振動が発生してしまっている。この振動は物理的な理由で発生している
のではなく、数値的不安定性によるものである。なぜこのような数値振動が発生してしまうの
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か、次節で説明する。

1.3.3 FTCSスキームの数値的安定性

Von Neumannの安定性解析

前節のFTCSスキームによって 1次元波動伝播のシミュレーションを行ってみると解が激し
く振動して数値的に不安定になってしまうことがわかった（図 1.4）。この不安定性の原因を調
べるために

un
j = cos(jθ) (1.18)

を差分式 (1.16)に代入してみる。ここで θは、波の波数を k として θ = k∆xであらわされる
量である。たとえば θ = π のとき un

j は図 1.5左図のように 2メッシュで 1波長の波、θ = π/3

のときは右図のように 6メッシュで 1波長の波をあらわす。

θ = π θ = π/3

j=0 1 2 3 4 j=0 1 2 3 4 5 6

図 1.5: メッシュ番号を jとしたときの un
j = cos(jθ)のプロフィール。左図: θ = πの場合。右

図： θ = π/3 の場合。

その結果は

un+1
j = cos(jθ) + νsinθsin(jθ) (1.19)

これをもう一度差分式に代入すると

un+2
j = (1 − ν2sin2θ)cos(jθ) + 2νsinθsin(jθ) (1.20)

= Re
[
(1 − iνsinθ)2eijθ

]
(1.21)

である。ここで、iは虚数単位、Reは実部をとることをあらわす。以上からわかるように、

un+k
j = Re

[
(1 − iνsinθ)keijθ

]
(1.22)

が成り立つ。
差分法 (差分スキーム)の数値的安定性を導くひとつの方法として、式 (1.18)を複素数に拡

張した
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un
j = gneijθ (1.23)

を差分式に代入して複素増幅率 gを求め、1タイムステップ間の振幅の増幅率 |g| ≤ 1 となる
条件を求める方法がある。これを Von Neumann の安定性解析と言う。

un
j = gnexp(ijθ)を FTCS差分式に代入すると

g = 1 − 1

2
ν(eiθ − e−iθ) (1.24)

= 1 − iνsinθ (1.25)

したがって

|g|2 = 1 + ν2sin2θ ≥ 1 (1.26)

以上の結果より、θ = 0 の場合を除いて FTCSスキームは常に不安定になる。

テイラー展開による方法

この節は最初に読む際には読み飛ばしてもかまわない。
差分化した式にテイラー展開を適用して差分式が満たす偏微分方程式を導くことによって

も FTCSスキームが数値的に不安定であることを示すことができる。tn+1 = tn + ∆t、xj±1 =

xj ± ∆x を用いると、

un+1
j = un

j +
∂u

∂t
∆t +

1

2

∂2u

∂t2
∆t2 + ... (1.27)

un
j+1 = un

j +
∂u

∂x
∆x +

1

2

∂2u

∂x2
∆x2 +

1

6

∂3u

∂x3
∆x3 + ... (1.28)

un
j−1 = un

j − ∂u

∂x
∆x +

1

2

∂2u

∂x2
∆x2 − 1

6

∂3u

∂x3
∆x3 + ... (1.29)

FTCSスキームの差分式

un+1
j − un

j = −1

2
ν(un

j+1 − un
j−1) (1.30)

の左辺に (1.27)、右辺に (1.28)、(1.29) を代入すると、

∂u

∂t
∆t +

1

2

∂2u

∂t2
∆t2 = −ν

(
∂u

∂x
∆x +

1

6

∂3u

∂x3
∆x3 + ...

)
(1.31)

これを整理すると
∂u

∂t
+ c

∂u

∂x
= −1

2

∂2u

∂t2
∆t − c

6

∂3u

∂x3
∆x2 + ... (1.32)
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ここで、解くべき偏微分方程式
∂u

∂t
= −c

∂u

∂x
(1.33)

より
∂2u

∂t2
= c2 ∂2u

∂x2
(1.34)

であることを用いると

∂u

∂t
+ c

∂u

∂x
= −c2

2

∂2u

∂x2
∆t − c

6

∂3u

∂x3
∆x2 + ... (1.35)

右辺が差分化によって新たに加わった項である。右辺第 1項は負の拡散係数を持つ拡散項に
なっている。「正の拡散」は物理量の値のピークをなまらせる働きがあるが、「負の拡散」では
物理量が周囲よりもわずかに高い値を持つ部分があるとこのピークがどんどん大きくなるとい
う不安定性を生ずる。
よって、テイラー展開法からもスカラー移流方程式のFTCSスキームは数値的に不安定であ

ることがわかる。

1.3.4 Lax-Friedrich のスキーム

この方法ではFTCSスキームの右辺の un
j を (un

j+1 + un
j−1)/2で置き換え、以下のように差分

化する。

un+1
j =

1

2
(un

j+1 + un
j−1) −

ν

2
(un

j+1 − un
j−1) (1.36)

un
j = gnexp(ijθ) を代入して増幅率 gを求めると

g =
1

2
(eiθ + e−iθ) − 1

2
(eiθ − e−iθ) (1.37)

= cosθ − iνsinθ (1.38)

したがって
|g|2 = cos2θ + ν2sin2θ (1.39)

図 1.6に増幅率 |g|を θの関数として極座標 (g, θ)で示す。Lax-Friedrich のスキームでは、
クーラン数 ν = c∆t/∆xが |ν| ≤ 1 を満たす場合、安定に計算を進めることができる。この条
件のことをCourant, Friedrich, Lewy 条件 (CFL条件あるいはクーラン条件)と言う。
クーラン条件の意味を考えてみよう。差分式 (1.36)を書き換えると以下の式を得る。

un+1
j =

1 − ν

2
un

j+1 +
1 + ν

2
un

j−1 (1.40)

クーラン条件 |ν| ≤ 1が満たされている場合、時刻 t = tn+1の値 un+1
j は t = tnの j − 1点の値

un
j−1と j + 1点の値 un

j+1の内挿値になっている。
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g

1-1

ν = 1

θ

ν=0.5

図 1.6: Lax-Friedrichスキームの場合の増幅率

n+1

t

n

x

boundary

j-1 j j+1

c ∆t

∆ x

図 1.7: Lax-Friedrichスキームにおける依存関係。破線と点線はそれぞれ ν < 1、ν > 1 の場
合の波の伝播を示す。

図 1.7に Lax-Friedrichスキームにおける変数の依存関係を示す。実線は時刻 t = tn+1の白丸
の格子点の値を計算する際に用いられる時刻 t = tnの格子点、破線は ν = c∆t/∆x < 1の場
合、点線は ν > 1の場合の波の伝播を示す。
クーラン条件は |c|∆t < ∆x、すなわち時間間隔∆tの間に波が１メッシュ以上伝わってはい

けないことを意味する。un+1
j は un

j−1と un
j+1だけから計算されるが、時間間隔が∆t > ∆x/|c|

となると xj−1 ≤ x ≤ xj+1より外側からも情報が伝わってくるため計算を安定に進めることが
できなくなるのである。
図 1.8にLax-Friedrichスキームを用いて１次元線形スカラー移流方程式の解を求めた結果を

示す。数値振動のない解が得られている。Lax-Friedrichスキームの欠点は数値散逸が大きく、
不連続面が時間とともになまってしまうことである。

1.3.5 1次精度風上差分法

図 1.9のように波が正の方向に伝わっている場合を考える。このとき、j点での空間微分を、
j点と風上にあたる j − 1点の間の差分で近似する方法が風上差分である。
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図 1.8: Lax-Friedrichスキームを用いた１次元線形スカラー移流問題のシミュレーション結果。
クーラン数 ν = 0.25で 50ステップ、100ステップ計算した結果を示す。

j-1 j j+1

c > 0
n+1

t

n

x

boundary

j-1 j j+1

c ∆t

∆ x

図 1.9: 左図：右方向に伝わる波、右図：1次精度風上差分における依存関係。破線は波による
情報の伝達を示す。

1次元スカラー移流方程式を時間については前進差分、空間については風上差分として差分
化すると、c > 0の場合、以下の差分式を得る。

un+1
j − un

j

∆t
+ c

un
j − un

j−1

∆x
= 0 (1.41)

したがって

un+1
j = un

j − c
∆t

∆x
(un

j − un
j−1) (1.42)

図 1.9右図に 1次精度風上差分における変数の依存関係を示す。黒丸は時刻 tn+1の白丸の格
子点の値を計算する際に用いられる時刻 tnの格子点、破線は時刻 tn+1に白丸の格子点に到達
する波の伝播を示す。
増幅率は

g = 1 − ν(1 − e−iθ) (1.43)
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= (1 − ν + νcosθ) − iνsinθ (1.44)

したがって

|g|2 = (1 − ν + νcosθ)2 + ν2sin2θ (1.45)

= 1 − 2ν(1 − ν)(1 − cosθ) (1.46)

これより、0 ≤ ν ≤ 1の場合、任意の θについて |g| ≤ 1であり、安定であることがわかる。
風上差分の差分式（1.42）は次のようにも書ける。

un+1
j = (1 − ν)un

j + νun
j−1. (1.47)

クーラン条件 0 ≤ ν ≤ 1が満たされている場合、un+1
j は時刻 t = tn+1に j番目の格子点に到達

する波の t = tnでの位置（図 1.9の破線矢印の出発点）における値 u(xj − c∆t, tn) を un
j−1と

un
j から線形内挿した値になっている。
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50 100

0 20 40 60 80 100
x

-1

0

1

2

3

u

16 32

図 1.10: 1次精度風上差分法を用いた１次元線形スカラー移流問題のシミュレーション結果。
左：クーラン数 ν = 0.25で 50ステップ、100ステップ計算した結果。右：ν = 0.80で 16ステッ
プ、32ステップ計算した結果。

図 1.10に１次精度風上差分法を用いたシミュレーション結果を示す。

練習問題

• クーラン数 νが 1,0.75,0.5 の場合について 1次精度風上差分の増幅率 |g|を位相 θの関数
として求め、極座標 (|g|, θ)でプロットせよ。

• 1次精度風上差分法の差分式 (1.42)にテイラー展開を適用することによって、以下の偏
微分方程式が得られることを示せ。右辺第 1項が拡散項であることに注意して、クーラ
ン条件を導け。

∂u

∂t
+ c

∂u

∂x
=

1

2
c∆x(1 − ν)

∂2u

∂x2
− 1

6
c(∆x)2(2ν2 − 3ν + 1)

∂3u

∂x3
+ ... (1.48)
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1.3.6 Lax-Wendroffのスキーム

Lax-Wendroffスキームはテイラー展開にもとづく差分法であり、以下のようにして導かれる。

un+1
j = un

j + ∆t
∂u

∂t
+

1

2
∆t2

∂2u

∂t2
+ O(∆t3) (1.49)

右辺第 2項、第 3項に ∂u/∂t = −c∂u/∂x、∂2u/∂t2 = c2∂2u/∂x2を代入すると

un+1
j = un

j − c∆t
∂u

∂x
+

1

2
c2∆t2

∂2u

∂x2
+ O(∆t3) (1.50)

空間微分 ∂u/∂x、∂2u/∂x2をそれぞれ中心差分で近似すると

un+1
j = un

j − 1

2
c∆t

un
j+1 − un

j−1

∆x
+

1

2
c2
(

∆t

∆x

)2

(un
j+1 − 2un

j + un
j−1) (1.51)

これがLax-Wendroffスキームである。以上の導出過程からわかるように、Lax-Wendroffスキー
ムは空間、時間についていずれも 2次精度の解法になっている。

Lax-Wendroffスキームの安定性を von Neumannの方法で調べてみる。増幅率は

g = 1 − ν

2
(eiθ − e−iθ) +

ν2

2
(eiθ − 2 + e−iθ) (1.52)

= 1 − iνsinθ + ν2cosθ − ν2 (1.53)

したがって、

|g|2 = [1 − ν2(1 − cosθ)]2 + ν2sin2θ (1.54)

= 1 − 2ν2(1 − ν2)(1 − cosθ) (1.55)

これより、|ν| ≤ 1 であれば任意の θについて |g| ≤ 1 であり、安定であることがわかる。
1次元スカラー方程式の場合、Lax-Wendroffスキームは以下のように 2段階に分けたスキー

ムと同等である。この方法を 2段階 Lax-Wendroff法と呼ぶ。

u
n+1/2
j+1/2 =

un
j+1 + un

j

2
− 1

2
c
∆t

∆x
(un

j+1 − un
j ) (1.56)

un+1
j = un

j − c
∆t

∆x
(u

n+1/2
j+1/2 − u

n+1/2
j−1/2 ) (1.57)

これを図示すると図 1.11 のようになる。
図 1.12に Lax-Wendroff法を用いて 1次元線形スカラー移流方程式の数値解を求めた結果を

示す。
Lax-Wendroff法は空間、時間についていずれも 2次精度の方法であるが、不連続面近傍で数

値振動を生じるという欠点を持つ。これに関して、以下の定理が知られている。

Godunov の定理

1次元スカラー移流方程式 ∂u/∂t + c∂u/∂x = 0に対して、
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n+1

t

n

x

boundary

j-1 j j+1

n+1/2

図 1.11: 2段階 Lax-Wendroffスキームにおける依存関係。第一段階で時刻 tnにおける格子点
j − 1、j、j + 1の値から時刻 tn+1/2 における格子点 j − 1/2、j + 1/2の値が計算される。第二
段階ではこれらの点の値を用いて時刻 tn+1の白丸の格子点の値が求まる。

un+1
j =

∑
k

aku
n
j+k (1.58)

の形の 2次精度以上の精度を持つどのようなスキームも解の単調性を維持することはできない。

ここで、「解の単調性を維持する」とは、時刻 tnにおけるプロフィール u(x, tn)が xに関し
て単調増加または単調減少する関数であるならば時刻 tn+1における関数 u(x, tn+1)も単調増加
または単調減少関数でなければならないことを意味する。たとえば１次精度風上差分の場合、
0 ≤ ν ≤ 1なら un+1

j は必ず un
j−1 と un

j の間の値をとるため、もしも un
j−1 ≤ un

j ≤ un
j+1 なら

un+1
j ≤ un+1

j+1 となり、単調性が維持される。Godunovの定理の証明については、たとえば藤井
(1994)を参照されたい。
数値振動を抑える方法には以下のものがある。

• 人工粘性を加える
粘性係数を κとして、

ũn+1
j = un+1

j + κ
∆t

∆x2 (un
j+1 − 2un

j + un
j−1) (1.59)

とする。

拡散係数 κは、たとえば以下のように不連続面付近で大きな値をとるように決める。Qv

はパラメータである。

κj+1/2 = Qv∆x|un
j+1 − un

j | (1.60)

• 流束制限関数を用いる
これについては後述する。
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図 1.12: 2段階 Lax-Wendroff法による１次元線形スカラー移流方程式のシミュレーション結
果。左図：クーラン数 ν = 0.25で 50ステップ、100ステップ計算した結果。右図：クーラン
数 ν = 0.80で 16ステップ、32ステップ計算した結果。

1.4 保存形表示と数値流束
1次元スカラー移流方程式

∂u

∂t
+ c

∂u

∂x
= 0 (1.61)

を以下の形に変形する
∂u

∂t
+

∂f

∂x
= 0 (1.62)

ここで、
f = cu (1.63)

は流束をあらわす。式 (1.62)の形を保存形と呼ぶ。
保存形式の物理的意味を考えるために、図 1.13に四角で囲って示した領域 (xj−1/2 < x <

xj+1/2)における保存量uの時間変化を求めてみよう。方程式 (1.62)を x = xj−1/2からx = xj+1/2

まで積分すると次式を得る。

∂

∂t

∫ xj+1/2

xj−1/2

udx + f(xj+1/2) − f(xj−1/2) = 0. (1.64)

したがって、保存量 uの積分量

un
j =

∫ xj+1/2

xj−1/2

u(x, tn)dx (1.65)

の時間変化は、この時間の間に左右の境界 xj±1/2を通って出入りする流束 fj±1/2 の差に等し
い。これより次式を得る。

un+1
j = un

j − ∆t

∆x
(fn

j+1/2 − fn
j−1/2) (1.66)
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j-1 j j+1

f j-1/2 f j+1/2

図 1.13: メッシュ点とメッシュ境界を通って出入りする流束の関係

差分式 (1.66)は保存則を厳密に満たす。これが保存形式を用いる利点である。
メッシュ境界の流束 fn

j±1/2は各メッシュ点での流束から近似的に計算することができる。こ
れを数値流束と言い、f̃n

j±1/2 であらわす。各種差分スキームの差分式から数値流束を求める
と以下のようになる。

• FTCS

f̃n
j+1/2 =

1

2
(fn

j+1 + fn
j ) (1.67)

• Lax-Friedrich

f̃n
j+1/2 =

1

2

[
(1 − 1

ν
)fn

j+1 + (1 +
1

ν
)fn

j

]
(1.68)

• Upwind (風上差分)

f̃n
j+1/2 =

1

2

[
(fn

j+1 + fn
j ) − |c|(un

j+1 − un
j )
]

(1.69)

この式は、c > 0の場合は f̃n
j+1/2 = fn

j、c < 0の場合は f̃j+1/2 = fn
j+1 と一致する。

• Lax-Wendroff

f̃n
j+1/2 =

1

2

[
(1 − ν)fn

j+1 + (1 + ν)fn
j

]
(1.70)

1.5 Burgers方程式の数値解法
ここまでは、移流の速さ cが一定の場合の１次元線形スカラー移流方程式を扱ってきた。本

節では、以下のような非線形波動方程式を差分近似によって解くことを考える。これは、非
粘性の場合のBurgers方程式である。

∂u

∂t
+ u

∂u

∂x
= 0 (1.71)
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この方程式は流線に沿うラグランジュ微分 d/dt = ∂/∂t + u∂/∂x を用いると次のように表現
できる。

du

dt
= 0 (1.72)

粒子的な描像に立てば、この方程式は力を受けていない粒子の運動を記述しており、その解
はもちろん u =一定 である。初期速度分布が正弦波的な場合、図 1.14に示すように、振幅が
正の 領域は+x方向に、負の領域は −x方向に移動してしだいに波が突っ立ち、有限の時刻で
後からきた粒子が前の粒子に追いついてしまう。連続系では空間の１点で速度が多価になるこ
とはできないため、このような場合に解に不連続が生じる。

図 1.14: Burgers方程式の解の様子。ある有限の時刻で後ろからきた粒子が前の粒子に追い
つく。
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図 1.15: Burgers方程式を１次精度風上差分法で解いた結果の例。左：初期に u > 0 の場合。
右：初期に u < 0の場合。図中の数字は時間ステップ数。時間きざみは∆t/∆x = 0.8とした。

Burgers方程式を差分法によって解くため、方程式をまず、以下のような保存系に変形する。



1.5. Burgers方程式の数値解法 23

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 (1.73)

これは、流束 f(x)が f(x) = u2/2の場合に相当し、各種差分スキームを適用することがで
きる。たとえば１次精度の風上差分法を適用する場合、線形スカラー方程式で移流の速さ cが
一定である場合には c > 0のとき fn

j+1/2 = fn
j であったことに注意し、メッシュ境界の j + 1/2

点での速さを (uj(t) + uj+1(t))/2 で近似すると、

• uj+1(t) + uj(t) > 0 のとき、fn
j+1/2 = fn

j = |uj(t)|2/2

• uj+1(t) + uj(t) ≤ 0のとき、fn
j+1/2 = fn

j+1 = |uj+1(t)|2/2

図 1.15に初期に u(x) = 1 + εsin(kx) (ε = 0.01, 0 ≤ kx ≤ 2π) のような速度分布を与えた場
合のBurgers方程式の解を１次精度の風上差分法で計算した結果を示す。図 1.15左図の場合、
初期に u ∼ 1であることから予想できるように非線形効果が小さい間の解は波の速さが c = 1

の場合の線形スカラー移流方程式の解とほぼ一致し、波はほぼその形を保ちながら右側に伝
わっていく。図 1.15左図では初期に u ∼ −1であり、波は左に伝わる。
非線形性が強くなる場合のBurgers方程式の数値解の例を図 1.16に示す。この例では初期に

u(x) = 1 + 0.1sin(kx)のような速度分布を与え、その後の時間発展を１次精度の風上差分法に
よって解いた。Burgers方程式の非線形項 u∂u/∂xの効果により波がしだいに突っ立ち、不連
続（衝撃波）が形成されることがわかる。

0 50 100 150 200
x

0.85

0.90

0.95

1.00

1.05

1.10

1.15

u

0 32 64 96 128 160

図 1.16: 初期に u(x) = 1 + 0.1sin(kx)の速度分布から始めた場合の Burgers方程式の数値解。
図中の数字は時間ステップ数。１次精度風上差分法で時間きざみは∆t/∆x = 0.8とした。
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1.6 流束制限関数
以上、線形スカラー移流方程式とBurgers方程式を例にして差分解法について解説してきた。

１次精度の風上差分法を用いるとこれらの方程式の解にあらわれる不連続面を数値振動を起こ
すことなくとらえることができる。しかしながら、Godunovの定理が示すように、空間２次
精度以上の解法では数値振動があらわれてしまうことがわかった。

Lax-Wendroff法の数値流束を補正することによって、不連続面近傍での振動を抑えること
ができないかどうか考えてみよう。Lax-Wendroff法の数値流束は次のようにも書ける。

f̃n
j+1/2 = c[un

j +
1

2
(1 − ν)(un

j+1 − un
j )] (1.74)

数値振動が生じない 1次精度の風上差分の数値流束は c > 0のとき f̃n
j+1/2 = cuj であり、Lax-

Wendroff法の数値流束の右辺第 1項と一致している。そこで、Lax-Wendroff法の数値流束の
右辺第 2項を次のように補正してみる。

f̃n
j+1/2 = c[un

j +
1

2
(1 − ν)Bj+1/2(u

n
j+1 − un

j )] (1.75)

ここで導入したBj+1/2のことを流束制限関数と呼ぶ。数値流束 (1.75)を差分式 (1.66)に代
入して変形すると次式を得る。

un+1
j − un

j

un
j−1 − un

j

= ν[1 − 1

2
(1 − ν)Bj−1/2] +

1

2
ν(1 − ν)

Bj+1/2

rj

(1.76)

ここで、

rj ≡
un

j − un
j−1

un
j+1 − un

j

(1.77)

である。

u j-1

n

u j

n

u
j

n+1

図 1.17: 数値振動が生じないようにするために un+1
j の値を制限する範囲

数値振動が生じないようにするために、図 1.17に示したように un+1
j が un

j と un
j−1の間の値

をとるように制限を加えることにしよう。これには、式 (1.76) の左辺の値を以下のように制限
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すればよい。

0 ≤ un+1
j − un

j

un
j−1 − un

j

≤ 1 (1.78)

式 (1.76)の右辺を代入すると以下の条件を得る。

−2

ν
≤ Bj−1/2 − Bj+1/2

rj

≤ 2

1 − ν
(1.79)

CFL条件が満たされている場合 0 ≤ ν ≤ 1 なので、

−2 ≤ Bj−1/2 − Bj+1/2

rj

≤ 2 (1.80)

この関係式は、以下のふたつの条件がともに満たされれば成立する。

0 ≤ Bj+1/2 ≤ 2 (1.81)

かつ

0 ≤ Bj+1/2

rj

≤ 2 (1.82)

この範囲を図示すると図 1.18の斜線のない領域になる。r < 0の場合はBj+1/2 = 0のみが許
される。

1

1

2

2

B j+1/2

r

LW

minmod

O

B = 2r

図 1.18: 流束制限関数Bj+1/2(r)の許容範囲。LWは Lax-Wendroff スキームの数値流束に対応
する制限関数。minmodは minmod関数。

Lax-Wendroff法の数値流束ではBj+1/2 = 1 (図の LW)であるため、r < 1/2の領域で許容範
囲外となり、数値振動が生じる。図の許容範囲内にある流束制限関数を用いることにより、数
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値振動が起こらないようにすることができる。その一例は以下のminmod関数 (図のminmod)

である。

minmod(r) =




0 (r < 0)

r (0 ≤ r ≤ 1)

1 (r > 1)

(1.83)

1.7 TVDスキーム
前節では、数値振動をおさえる方法として流束制限関数を導入した。ここでは、数値振動の

発生を定量化する方法について考える。
このために、1次元線形スカラー移流方程式において以下の量を定義する。

U =
∫ ∣∣∣∣∣du

dx

∣∣∣∣∣ dx. (1.84)

この量は波の振幅の総和に等しく、移流方程式の厳密解では波のプロフィールが保たれるため、
dU/dt = 0 である。
以上との類推により、メッシュ点ごとの物理量の変化量の総和を次式のように定義し、これ

をTotal Variation (TV)と言う。

TV (un) ≡∑
j

|un
j+1 − un

j | (1.85)

Total Variation が時間とともに増大しないという条件

TV (un+1) ≤ TV (un) (1.86)

のことをTotal Variation Diminishing (TVD)条件と呼ぶ。
流束制限関数を導入することによって、差分スキームがTVD条件を満たすようにすること

ができる。

1.8 放物型方程式の差分解法
天体シミュレーションにあらわれる放物型方程式

• 熱伝導方程式
∂T

∂t
= κ∇2T

• 磁気拡散方程式
∂B

∂t
= η∇2B
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以下のような 1次元拡散方程式を差分近似によって初期値問題として解くことを考えてみよ
う。すなわち、時刻 t = 0における u(x, t)の値 u(x, 0)を与えて、任意の時刻 t (> 0)における
u(x, t)を求める。

∂u

∂t
= κ

∂2u

∂x2
(1.87)

拡散係数 κは xに依らないとする。よく知られているように、この方程式の解は初期条件を
フーリエ変換することによって解析的に求めることができる。解のおおまかな様子を図に示す。

x

u
t = 0

t > 0

図 1.19: 拡散方程式の解の時間発展の様子

拡散方程式の陽解法 (explicit法)

1次元拡散方程式 (1.87)を時間について現在の時刻 tnと∆t後の時刻 tn+1 = tn + ∆tの間で
前進差分、空間については中心差分 (FTCS差分）をとって差分化すると次式を得る。ここで、
un

j = u(xj, tn) である。

un+1
j − un

j

∆t
= κ

un
j+1 − 2un

j + un
j−1

∆x2
(1.88)

式 (1.88)を変形して次式を得る

un+1
j = un

j +
κ∆t

∆x2
(un

j+1 − 2un
j + un

j−1) (1.89)

右辺は時刻 tnでの値、左辺は時刻 tn+1 = tn + ∆t での値だけで書けている。したがって、時
刻 tnでの各格子点での値がわかっていれば直ちに 1タイムステップ後 (tn+1)の各格子点での
値を計算することができる (陽解法）。
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Von Neumannの安定性解析

FTCSスキームの数値的安定性を調べるために un
j = gnexp(ijθ)を FTCS差分式に代入す

ると

gn+1eijθ = gneijθ +
κ∆t

∆x2
gn[ei(j+1)θ − 2eijθ + ei(j−1)θ]. (1.90)

よって、

g = 1 − 2
κ∆t

∆x2
(1 − cosθ). (1.91)

増幅率が |g| ≤ 1 であるためには

−1 ≤ 1 − 2
κ∆t

∆x2
(1 − cosθ) ≤ 1. (1.92)

したがって、

0 ≤ κ∆t

∆x2
(1 − cosθ) =

κ∆t

∆x2
2sin2 θ

2
≤ 1. (1.93)

任意の θ (任意の波長の波)について安定であるためには

0 ≤ κ∆t

∆x2
≤ 1

2
. (1.94)

以上により、FTCSスキームにより 1次元拡散方程式のシミュレーションを行う場合、時間
ステップ ∆t が上式を満たすようにコントロールする必要があることがわかる。たとえばメッ
シュサイズを半分にした場合、∆t は 1/4にしなければならない。

拡散方程式の陰解法 (implicit法)

拡散方程式を差分化する際に右辺の空間差分の部分に、求めるべき tn+1での uの値を含め
て差分化する方法がある。このような方法を陰解法(implicit)法と呼び、explicit法とは安定性
条件が異ってくる。代表的な陰解法である Crank-Nicolson 法では、パラメータ λを導入して、
以下のように差分化する。

un+1
j − un

j

∆t
= κ

[
λ

un+1
j+1 − 2un+1

j + un+1
j−1

∆x2
+ (1 − λ)

un
j+1 − 2un

j + un
j−1

∆x2

]
(1.95)

これを整理すると次のような行列を含む式になる。

Aun+1 = b(un). (1.96)

これを解いて un+1を求めればよい。

練習問題

1. 行列Aとベクトル bの各要素を求めなさい。
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2. Von Neumann の安定性解析により、λ > 1/2 ならば κ∆t/∆x2 > 0 を満たす任意の∆t に
ついてCrank-Nicolsonスキームは数値的に安定であることを示しなさい。

参考文献
(1)流体力学の数値計算法 (1994) 東京大学出版会、藤井孝蔵著
(2)数値天体物理学サマースクールのテキスト (2000)、富阪幸治、花輪知幸著
(3) Numerical Computation of Internal and External Flows, C. Hirsch, John Wiley & Sons,

1990

(1)は、数値流体力学全般についてまとめられたテキストであり、必読文献である。
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富阪幸治（国立天文台）

第１章では、線形、非線形の一変数の波動方程式の数値解法について学んだ。ここでは、流体
力学、磁気流体力学の方程式系について学び、ここにあらわれる非線系連立方程式の解法が第
１章のそれと同じようにして得られることを示す。

2.1 基礎方程式
ここでは、まず流体力学の基礎方程式を導出する。その後、磁場の効果を考慮し、磁気流体

力学の基礎方程式を得る。

2.1.1 質量

まず最初の基礎方程式は、ある体積の中に含まれる流体の質量が単位時間に流れ込む質量流
速によって増減するという連続の式

∂

∂t

∫
V

ρdV = −
∫

S
ρv · ndS (2.1)

から得られる。これにGaussの定理∫
S

E ·ndS =
∫

V
divEdV (2.2)

を用いて右辺を体積積分に変換すると、∫
V

∂ρ

∂t
dV +

∫
V

div(ρv)dV = 0 (2.3)

が得られる。この式は空間中にある体積を固定した時にその内部に含まれる質量の保存を表す
式である。

V として微小体積を考えれば、微分形で表した質量保存の式

∂ρ

∂t
+ div(ρv) = 0 (2.4)

が得られる。
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2.1.2 運動量

つぎに、ある体積の中に含まれる流体の運動量は、質量と同じように、単位時間に流れ込む
運動量流束によって増減するが、それに加えて運動量の場合は、この流体の体積に加わってい
る「力」によっても増減する。

∂

∂t

∫
V

ρvdV = −
∫

S
ρv(v · n)dS −

∫
S

pndS +
∫

V
ρgdV (2.5)

右辺第２項は、表面に加わる力で、ここでは圧力による運動量変化を表している。第３項は
体積力で、ここでは重力 ρg（gは重力加速度）による運動量変化を表している。もう一つの
Gaussの定理 ∫

S
fndS =

∫
V

gradfdV (2.6)

を用いて右辺第２項を体積積分に変換すると、
∫

V

∂ρv

∂t
dV +

∫
V

div(ρvv)dV = −
∫

V
gradpdV +

∫
V

ρgdV (2.7)

ここで V として微小体積を考えれば、

∂ρv

∂t
+ div(ρvv) = −gradp + ρg (2.8)

が得られる。ρvvはテンソル積で

ρvv =




ρvxvx ρvxvy ρvxvz

ρvyvx ρvyvy ρvyvz

ρvzvx ρvzvy ρvzvz


 (2.9)

をあらわす。この式は添字をつけて書くと、

∂ρvi

∂t
+

∂ρvivj

∂xj

= − ∂p

∂xi

+ ρgi (2.10)

と書ける。もちろん、x1 = x、x2 = y、x3 = zを表している。

2.1.3 エネルギー

エネルギーの保存を考える。単位体積あたりの全エネルギー eは運動エネルギーと内部エネ
ルギー εの和で

e =
1

2
ρ|v|2 + ε (2.11)

理想気体の場合、単位質量あたりの内部エネルギーは温度に比例するので、単位体積あたりの
それは温度×密度に比例し、ε = p/(γ − 1) （γは気体の比熱比）とかける。質量と同じよう
に、全エネルギーの増減はエネルギー流束によるだけなら、∂e/∂t + div(ev) = 0となるはず
であるが、そうではない
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熱力学の第１法則で断熱の場合を考えると、内部エネルギーU と体積 V は

dU

dt
+ p

dV

dt
= 0 (2.12)

という関係で変化する。これは次のように書き換えられる。

d

dt

∫
V

εdV + p
∫

S
(n · v)dS = 0, (2.13)

第２項を変形するのに、単位時間あたりの体積変化が (n · v)dSの積分に比例することを用い
た。ここで、第１項の時間微分が空間に固定された体積に含まれる内部エネルギーでなく、時
間 t = 0で体積 V (t = 0)にあった物質の時間 t > 0での体積 V (t)に含まれる内部エネルギー
の時間変化（ラグランジェによる微分と呼ぶ）を表していることに注意し、時間微分が空間に
固定された体積に含まれる内部エネルギーの時間変化（オイラーによる微分と呼ぶ）に書き換
える。

d

dt

∫
V

εdV =
∂

∂t

∫
V

εdV +
∫

S
ε(n · v)dS, (2.14)

であるから、
∂

∂t

∫
V

εdV +
∫

S
ε(n · v)dS = −p

∫
S
(n · v)dS (2.15)

となる。この微分形として、単位体積あたりの熱エネルギー εは

∂ε

∂t
+ div(εv) = −p divv (2.16)

という関係にしたがって変化することが簡単な計算でわかる。これと式 (2.8)から得られる運
動エネルギーの変化を表す（この式の右辺が単位体積・単位時間に流体素片になされた仕事を
表すことに注意）

∂ρ|v|2/2

∂t
+ div

(
ρ|v|2

2
v

)
= −v · gradp + ρv · g, (2.17)

の和をとれば全エネルギーに関する方程式が得られる。断熱の場合のエネルギーに関する方程
式は、

∂e

∂t
+ div [(e + p)v] = ρv · g (2.18)

ここで eは単位体積あたりの全エネルギーで

e = ρ|v|2/2 + ε (2.19)

流体力学の基礎方程式は、式 (2.4)、(2.8)および (2.18)である。このようにして得られた、
流体力学の基礎方程式は、ガリレイ変換不変であることに注意しておこう。
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2.1.4 磁気流体力学

磁場の効果を取り入れよう。ローレンツ力を外力として加えると、

1

c
j × B = − 1

4π
B × (∇× B),

= −∇
(

B2

8π

)
+

1

4π
(B · ∇)B, (2.20)

だから、式 (2.8)は

∂ρv

∂t
+ div(ρvv) = −gradp + ρg −∇

(
B2

8π

)
+

1

4π
(B · ∇)B (2.21)

もしくは、流束の項にMaxwellの応力テンソルを加える形にして、

∂ρvi

∂t
+

∂

∂xi

(ρvivj + pδij − 1

4π
BiBj +

1

8π
B2δij) = ρgi (2.22)

のように書き直せる。またエネルギー方程式は、エネルギーに磁場のエネルギーを加え、流束
にポインティングベクトルを加えることによって、

∂

∂t

(
e +

B2

8π

)
+ ∇ ·

[
(e + p) v +

1

4π
{B × (v × B)}

]
= 0 (2.23)

のようになる。
さらに、電磁気学のファラデーの法則

∇× E = −∂B

∂t
(2.24)

とアンペールの法則
∇× B =

c

4π
j (2.25)

オームの法則
j = σ(E + v × B) (2.26)

から磁場の誘導方程式
∂B

∂t
= ∇× (v × B) +

c2

4πσ
∇2B (2.27)

が得られる。ここで、電気伝導度 σ → ∞を完全磁気流体力学極限とよぶ。
これから、磁気流体力学の基礎方程式は、式 (2.4)、(2.21)もしくは (2.22)、(2.23)と (2.27)

になる。
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2.1.5 保存形式

流体力学の基礎方程式をまとめると、以下のようになる。

∂ρ

∂t
+

∂ρvx

∂x
+

∂ρvy

∂y
+

∂ρvz

∂z
= 0, (2.28)

∂ρvx

∂t
+

∂ρv2
x + p

∂x
+

∂ρvxvy

∂y
+

∂ρvxvz

∂z
= ρgx, (2.29)

∂ρvy

∂t
+

∂ρvyvx

∂x
+

∂ρv2
y + p

∂y
+

∂ρvyvz

∂z
= ρgy, (2.30)

∂ρvz

∂t
+

∂ρvzvx

∂x
+

∂ρvzvy

∂y
+

∂ρv2
z + p

∂z
= ρgz, (2.31)

∂e

∂t
+

∂(e + p)vx

∂x
+

∂(e + p)vy

∂y
+

∂(e + p)vz

∂z
= ρ(vxgx + vygy + vzgz), (2.32)

ここで、体積力の外力が働いていない（通常の流体力学が主に対象とする）場合は密度、運動
量密度、全エネルギー密度は、それらの流束の発散で与えられる。このため、このような形式
の基礎方程式を保存形式と呼ぶ。
これは、保存量

U =




ρ

ρvx

ρvy

ρvz

e




, (2.33)

に対して、その x方向、y方向、z方向に流れる流束、

F =




ρvx

ρv2
x + p

ρvxvy

ρvxvz

(e + p)vx




,G =




ρvy

ρvyvx

ρv2
y + p

ρvyvz

(e + p)vy




,H =




ρvz

ρvzvx

ρvzvy

ρv2
z + p

(e + p)vz




, (2.34)

を用いて、
∂U

∂t
+

∂F (U)

∂x
+

∂G(U )

∂y
+

∂H(U )

∂z
= S(U), (2.35)

Sはソース項で体積力である重力のみが働いている時は

S =




0

ρgx

ρgy

ρgz

ρ(vxgx + vygy + vzgz)




, (2.36)

のように与えられる。
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2.2 円筒座標、球座標
軸対称、球対称などの対称性を持つ問題については、空間の独立変数の数（次元）を減らす

ことにより、計算量を減少させる。そのため、１次元球対称の場合の球座標や、２次元軸対称
の場合の円筒座標で書いた基礎方程式を見ておくことにする。

2.2.1 １次元球対称

１次元球対称の場合は、基礎方程式は

∂ρ

∂t
+

1

r2

∂r2ρvr

∂r
= 0, (2.37)

∂ρvr

∂t
+

1

r2

∂r2ρv2
r

∂r
= −∂p

∂r
, (2.38)

∂e

∂t
+

1

r2

∂r2(e + p)vr

∂r
= 0, (2.39)

であるが、r2を掛けた量を保存量と流束にとることによって

∂Ū

∂t
+

∂F̄ (Ū )

∂r
= S̄(Ū), (2.40)

Ū = r2U = r2




ρ

ρvr

e


 , F̄ = r2F = r2




ρvr

ρv2
r + p

(e + p)vr


 , S̄ =




0

2rp

0


 , (2.41)

2.2.2 ２次元軸対称円筒座標

２次元軸対称の問題を円筒座標 (z, r)を用いて解く場合は良く行なわれる。円筒座標 (z, r)

について考えると、divAが ∂Ax/∂x + ∂Ay/∂yから (1/r)∂(rAr)/∂r + ∂Az/∂zなどの表式が変
わるので流束とソース項がデカルト座標のそれとは違うことになる。

∂U

∂t
+

∂F (U)

∂r
+

∂G(U )

∂z
= S(U), (2.42)

について、

U =




ρ

ρvr

ρvz

e


 ,F =




ρvr

ρv2
r + p

ρvrvz

(e + p)vr


 ,G =




ρvz

ρvzvr

ρv2
z + p

(e + p)vz


 ,S = −1

r




ρvr

ρv2
r

ρvrvz

vr(e + p)


 , (2.43)

もう一つの方法は保存量、流束に rを掛けた量を用いると、

∂Ū

∂t
+

∂F̄ (Ū)

∂r
+

∂Ḡ(Ū )

∂z
= S̄(Ū), (2.44)
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について、

Ū = rU , F̄ = rF , Ḡ = rG, S̄ =




0

p

0

0


 , (2.45)

2.3 波動
一次元の流体力学を考える。基礎方程式は

∂U

∂t
+

∂F (U )

∂x
= 0, (2.46)

U =




ρ

ρvx

e


 ,F =




ρvx

ρv2
x + p

(e + p)vx


 , (2.47)

であるが、ここでは特にエントロピー一定のガスに対する１次元流体力学を考える。エントロ
ピー一定でなくとも p = p(ρ)のように圧力が密度だけに依存して変化するバロトロピー気体
でも議論は同じである。エネルギー保存に関する eの変化を考える第３成分の式はポアッソン
の関係式 p = Kργ（バロトロピー気体なら p = p(ρ)）で置き換えられる。

∂U

∂t
+

∂F (U )

∂x
= 0, (2.48)

U =

(
ρ

ρvx

)
,F =

(
ρvx

ρv2
x + p

)
, (2.49)

この２本の式と p = Kργで方程式系が閉じることは容易にわかる。
ここで、∂p

∂x
=
(

∂p
∂ρ

)
ad

(
∂ρ
∂x

)
= c2

s
∂ρ
∂x
（
(

∂p
∂ρ

)
ad

= c2
sにあらわれる csを音速と呼ぶ）であること

に注意して、上の式を書き直すと
∂ρ

∂t
+

∂ρvx

∂x
= 0, (2.50)

∂ρvx

∂t
+

∂ρ(v2
x + c2

s)

∂x
= 0, (2.51)

となる。

2.3.1 線形のガスダイナミクス

系が一様（密度 ρ0）で静止（速度 vx = 0）しており、変化が微小である場合（|δρ| << ρ0、
|vx| << cs）、式 (2.51)は

∂ρ

∂t
+ ρ0

∂vx

∂x
= 0, (2.52)
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∂vx

∂t
+

c2
s

ρ0

∂ρ

∂x
= 0, (2.53)

となる。
これは昨日学んだ移流方程式のように書き直すと

∂

∂t

(
ρ

vx

)
+

(
0 ρ0

c2
s/ρ0 0

)
∂

∂x

(
ρ

vx

)
= 0 (2.54)

のようになる。ここで出てくる行列Aを対角化することを考える。

A =

(
0 ρ0

c2
s/ρ0 0

)
(2.55)

の固有値を求めると二つの相異なる実固有値は λ1 = −cs、および λ2 = +csであること、また
行列Aを対角行列

Λ =

(
λ1 0

0 λ2

)
, (2.56)

に対角化するには、行列Aの固有値 λiとその固有値に属する行列Aの右固有ベクトル r(i)を用
いると、

Ar(i) = λir
(i), (2.57)

（r(i) は縦ベクトル (α, β)t）。また、その固有値に属する行列Aの左固有ベクトル �(i) を用い
ると、

�(i)A = λi�
(i), (2.58)

（�(i)は横ベクトル (γ, δ)）で、
�(i)Ar(i) = λi, (2.59)

と書ける。これを、i = 1, 2について両方考える。つまり、右固有ベクトルを横に並べて作っ
た右固有行列

R = (r(1), r(2)) (2.60)

および、左固有ベクトルを縦に並べて作った左固有行列

L =

(
�(1)

�(2)

)
, (2.61)

を用いると、

Λ =

(
λ1 0

0 λ2

)
= LAR, (2.62)

もしくは、
A = RΛL, (2.63)
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のように対角化されることがわかる。もちろん、�(i) · r(j) = δij であるから、LR = I でLと
Rは逆行列の関係にある。R、Lを具体的に書くと、

R =

(
ρ0 ρ0

−cs cs

)
, (2.64)

また

L =
1

2csρ0

(
cs −ρ0

cs ρ0

)
, (2.65)

である。これは、式 (2.54)が以下のように書き直せることを意味する。

∂U

∂t
+ RΛL

∂U

∂x
= 0. (2.66)

ここで、行列R、逆行列Lが一定であり微分演算と交換することを用いると、この式は、以
下のように書き換えられる。

∂LU

∂t
+ Λ

∂LU

∂x
= 0, (2.67)

すなわち、LU = L(ρ, vx)
t = (w1, w2)

tという新しい変数に対しては、基礎方程式は独立な二
つの式に分解できることがわかる。

∂w1

∂t
− cs

∂w1

∂x
= 0,

∂w2

∂t
+ cs

∂w2

∂x
= 0 (2.68)

t = 0でのwに対する初期条件は uに対するそれからw(x, t = 0) = Lu(x, t = 0) のようにし
て求められ、移流方程式はそのw(x, t = 0)の値をw0

1は左へ、w0
2 は右へ、速度 csで移動させ

て行く。すなわちこの解は、

w1(x, t) = w1(x + cst, 0),

= Lu(x + cst, 0),

=
1

2ρ0cs

[csρ(x + cst, 0) − ρ0vx(x + cst, 0)] ,

(2.69)

w2(x, t) = w2(x − cst, 0),

= Lu(x − cst, 0),

=
1

2ρ0cs

[csρ(x − cst, 0) + ρ0vx(x − cst, 0)] ,

(2.70)

最後に、この解を、U = RW で逆変換すれば、ρ、vxの時間発展が得られ、

ρ(x, t) = ρ0w1(x, t) + ρ0w2(x, t),

=
1

2cs

[csρ(x + cst, 0) − ρ0vx(x + cst, 0)]

+
1

2cs

[csρ(x − cst, 0) + ρ0vx(x − cst, 0)] , (2.71)
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x

t

UL UR

lambda1
lambda2

lambda2

lambda1

lambda1

PQ R

図 2.1: 特性線によって区分けされた領域ごとに、いずれの初期値の影響下にあるかがわかる。

vx(x, t) = −csw1(x, t) + csw2(x, t),

= − 1

2ρ0

[csρ(x + cst, 0) − ρ0vx(x + cst, 0)]

+
1

2ρ0

[csρ(x − cst, 0) + ρ0vx(x − cst, 0)] , (2.72)

のように得られる。

2.3.2 Riemann問題

線形ガスダイナミクス方程式のような定係数の双曲型方程式系の初期値問題で初期値に存在
した不連続が進化する形の解を考える。つまり、

∂U

∂t
+ A

∂U

∂x
= 0, (2.73)

初期条件

U (x, t = 0) =

{
UL, x < 0

UR, x > 0
, (2.74)

のようなものである。式 (2.71)、(2.72)から、図 2.1で、点P、Q、Rは影響を受ける初期状態
ρ(x ± cst, t = 0)、vx(x ± cst, t = 0)がULであるかURであるかが異なっている。
すなわち、点Pは右に進む音波 λ2 = +csではULと、左に進む音波 λ1 = −csではURに影

響を受けており、点Qは右に進む音波でも左に進む音波でもULに影響を受けており、点Rは
右に進む音波でも左に進む音波でもURに影響を受けていることがわかる。

U = RW という関係は

U(x, t) =
2∑

i=1

wi(x, t)r(i),

=
2∑

i=1

wi(x − λit, t = 0)r(i), (2.75)
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と書き直せる。ここで、r(i)は λiに属する右固有ベクトルを表している。
同様に、初期状態ULとURを λiに属する固有ベクトルで展開すると

UL =
2∑

i=1

αir
(i), UR =

2∑
i=1

βir
(i) (2.76)

となるが、図 2.1で点Qの属する領域ではUL = α1r
(1) + α2r

(2)であり、また、点Rの属する
領域ではUR = β1r

(1) + β2r
(2)であるが、点Pの属する領域ではU ∗ = β1r

(1) + α2r
(2)となる。

ここで、注意すべき点は、このRiemann問題で、左から右へ λ1で伝搬する特性線を越える
と、∆U = (β1 − α1)r

(1) だけ変化し、またさらに λ2で伝搬する特性線を越えると、∆U =

(β2 − α2)r
(2) だけ値が変化するということである。

2.3.3 非線形のガスダイナミクス

バーガーズ方程式

ここまでの例では、定数係数の行列Aは一定値の特性スピード±csを与えたため、すべて
の特性線は同じ傾きを持ち、同じ種類の特性線が交わることはなかった。
非線形の代表選手として非粘性バーガーズ方程式

∂u

∂t
+

∂u2/2

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
= 0, (2.77)

を学んだ。ここでは行列Aに相当するものは uとなるから、一つだけ存在する特性スピード
λが空間、時間によって異なり、dλ(u)/du > 0であることがわかる (convex flux)。
振幅の大きな部分が早い特性スピードを持ち次第に波形がつったって来る。最終的に後ろか

ら来た特性線が前からのものに追いつくところでは物理量が不連続になり実存の気体中では衝
撃波を生じる。実際の衝撃波では、ここまで考慮していなかった熱伝導、粘性などの輸送現象
が重要になって気体の平均自由行程程度で物理状態が変化するがその平均自由行程程度より大
きな通常の気体のスケールで考えれば物理量が不連続になるように見える。

等温ガス

式 (2.51)で音速を一定とすると、等温ガスに対する基礎方程式が得られる。ここで ρu = m

と書いて従属変数を

U =

(
ρ

m

)
, (2.78)

と書き直すと、流束の方はこれらを使って

F =


 m

a2ρ +
m2

ρ


 , (2.79)
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u(x)

t
x

x

図 2.2: 非粘性バーガーズ方程式の波形（上）と特性線の傾き（下）の関係。振幅の大きな部
分が早い特性スピードを持ち次第に波形がつったって来る。

のように書ける。音速の値が一定であることを強調するためにここでは cs = aと書いておく
ことにする。次に、基礎方程式を移流方程式型に書き換えると、

∂

∂t

(
ρ

m

)
+


 0 1

a2 − m2

ρ2
2m
ρ


 ∂

∂x

(
ρ

m

)
= 0, (2.80)

のようになる。
この式は線形のガスダイナミクス方程式で行なったのと同じ方法で対角化を行なうことがで

きて、Aのこの固有値は

λ1 =
m

ρ
− a = u − a, (2.81)

λ2 =
m

ρ
+ a = u + a, (2.82)

であることがわかる。それぞれの固有値に属する固有ベクトルは、

r(1) =

(
1

u − a

)
, r(2) =

(
1

u + a

)
, (2.83)

なので、対角化する行列は

R =

(
1 1

u − a u + a

)
,L =

(
u+a
2a

− 1
2a

−u−a
2a

1
2a

)
, (2.84)

で、
LAR = Λ, RΛL = A, (2.85)

のように対角化される。
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2.4 衝撃波
非粘性バーガーズ方程式に関してリーマン問題を考える。ここでは簡単のために u > 0の場

合のみを考えるが、u < 0の場合についても容易に理解できよう。
初期条件で左右の物理量の値の差が小さい場合は、uR > uLであっても uR < uLであっても

図 2.4下に見るように、物理量の不連続は、uで右に伝搬する。ところが、不連続が非線形の
場合には、(1)初期に UL = uL、UR = uRで uL > uRである場合は、x < 0からでる特性線が
x > 0からでる特性線に追い付くことになる。uLを運んでくる波と uRを運んでくる波が同じ
点に到達するので不連続が発生する（図 2.3上）。流体力学の場合この不連続は衝撃波と呼ば
れる。
その逆に、(2)uL < uRである場合（図 2.3下、図 2.4上右）は、uLと uRの間の不連続が同

様に右へ伝搬して行く可能性があるが、このような、特性線の重なりによらない不連続の生成
は物理的には起こり得ず、また、流体力学で生ずる衝撃波に当てはめると不連続を前面から後
面に通り過ぎる間に気体のエントロピーが減少する場合に相当しており、物理的には起こり得
ない（エントロピー条件）。

uL < uRである場合は、希薄波と呼ばれる構造が出現し、位相空間で希薄波のHeadと示さ
れた点から希薄波のTailと示された点まで uの値が線形に変化しそれに応じて特性線の傾き
も次第に変化する流れを生ずる。

2.4.1 ランキン・ユゴニオ関係

保存系の流体力学の１次元の基礎方程式

∂U

∂t
+

∂F

∂x
= 0, (2.86)

U =




ρ

ρvx

e


 ,F =




ρvx

ρv2
x + p

(e + p)vx


 , (2.87)

を、空間の決まった２点 xLから xRまで積分する。その間に衝撃波を含みその位置 xS(t)は時
間とともに速度 V = dxS(t)/dtで移動するとする。

d

dt

∫ xS

xL

U (x, t)dx +
d

dt

∫ xR

xS

U(x, t)dx = F (U (xL, t)) − F (U(xR, t)), (2.88)

のようになる。左辺を書き換えると、

[U(xSL
) − U (xSR

)] V +
∫ xS

xL

∂U (x, t)

∂t
dx +

∫ xR

xS

∂U (x, t)

∂t
dx = F (U (xL, t)) − F (U(xR, t)),

(2.89)

となる。ここで、U (xSL
)は衝撃波面へ左から近付いた x = xS − ε(ε > 0) での値、U (xSR

)は
衝撃波面へ右から近付いた x = xS + εでの値を表す。左辺の２つの積分は xL → xS、xR → xS
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図 2.3: 非粘性バーガーズ方程式のリーマン問題。（上）uL > uRの場合、特性線の重なりが衝
撃波を形成する。（左下）uL < uRの場合、特性線は遠ざかって行く、この場合、uLと uRを
不連続で接続する解（膨張衝撃波）は、非物理的で、（右下）の希薄波をはさんで物理量が uL

から uRまで連続的に変化する現象が実現する。
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図 2.4: 非粘性バーガーズ方程式のリーマン問題。（左）uL = 1、uR = 0.1の場合、衝撃波
型 (t = 0.8 × [0, 16, 32, 48, 64, 80]) 。（右）uL = 0.1、uR = 1の場合、希薄波型 (t = 0.8 ×
[0, 16, 32, 48, 64, 80])。下はそれぞれ、振幅が微小で線形な系としてふるまう場合で、（左）uL =

1、uR = 0.99の場合と（右）uL = 0.99、uR = 1の場合。
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のように近付ければ小さくなるので、

[U(xSL
) − U (xSR

)] V = F (U(xL, t)) − F (U (xR, t)), (2.90)

これをランキン・ユゴニオ関係と呼ぶ。流体力学の基礎方程式はガリレイ変換不変であるので、
速度 V で移動する座標系に移っても式の形は変化しない。そこで、普通は衝撃波の伝搬速度
と同じ速度で移動する座標系に移って、その座標系での速度 v̂x = vx − V を用いると、この系
では

F (U(xL, t)) − F (U(xR, t)) = 0, (2.91)

であるから、

(ρv̂x)L = (ρv̂x)R (2.92)

(ρv̂2
x + p)L = (ρv̂2

x + p)R (2.93)

[(ê + p)v̂x]L = [(ê + p)v̂x]R (2.94)

という衝撃波前面と後面の物理量の関係をつけるものをランキン・ユゴニオ関係と呼ぶ。

2.4.2 磁気流体力学

結果のみを示すと流れの速度が衝撃波面に垂直な垂直衝撃波を考え、かつ磁場が衝撃波面に
平行な向きをしている時、質量流束、運動量流束、エネルギー流束の表式から、

(ρvx)L = (ρvx)R (2.95)

(ρvx + p +
B2

8π
)L = (ρvx + p +

B2

8π
)R (2.96)[

(e + p +
B2

4π
)vx

]
L

=

[
(e + p +

B2

4π
)vx

]
R

(2.97)

(vxB)L = (vxB)R (2.98)

のようになる。

2.5 衝撃波管問題
時間 t = 0での初期状態で圧力、密度などに不連続な分布を持っており時間発展をすると衝

撃波を生ずるものを衝撃波管とよぶ。
ここではまず等温ガスに対して、初期に左側 (x < 0)に ρ = ρL、右側 (x > 0)に ρ = ρR た

だし、ρL > ρRのような分布を考え、そこに生じる流れを調べる。
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図 2.5: 等温の衝撃波管問題。点線は初期値 ρL = 1(−0.5 < x < 0)、ρR = 0.125(0 < x < 0.5)、
vxL = vxR = 0, cs = 1、実線は t = 0.142の構造。計算法は修正ラックス・ベンドルフ法。右側
に進んで行く等温衝撃波と、左側に進んで行く希薄波が生じていることがわかる。

2.5.1 等温衝撃波

衝撃波に止まった系で、衝撃波前面の速度を u1、衝撃波後面の速度を u2、それぞれの密度
を、ρ1、ρ2、とおくと、ランキン・ユゴニオ関係から、

ρ1u1 = ρ2u2, (2.99)

ρ1(u
2
1 + a2) = ρ2(u

2
2 + a2), (2.100)

ここで、式 (2.99)から
ρ2

ρ1

=
u1

u2

= x, (2.101)

と置くと、式 (2.100)は
x2 − (M 2

1 + 1)x + M 2
1 = 0, (2.102)

となり、これから、

x = M 2
1 =

(
u1

a

)2

=
ρ2

ρ1

, (2.103)

よって、
u1u2 = a2 (2.104)

となる。衝撃波の前方は静止していたとき、静止系から見た時の衝撃波後面の速度 U2は、衝
撃波面の進む速度を Vs = u1として

U2 = Vs − u2 = Vs − a2

Vs

, (2.105)
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であり、衝撃波後面の密度は

ρ2 = ρ1

(
Vs

a

)2

(2.106)

となる。

2.5.2 等温の場合のRiemann不変量

連続の式
∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0, (2.107)

を ρで割ったもの
∂ ln ρ

∂t
+

∂u

∂x
+ u

∂ ln ρ

∂x
= 0, (2.108)

と、運動方程式
∂u

∂t
+ u

∂u

∂x
+

a2

ρ

∂ρ

∂x
= 0, (2.109)

を等温音速 aで割ったもの、
∂M
∂t

+ u
∂M
∂x

+ a
∂ ln ρ

∂x
= 0, (2.110)

から、式 (2.108)と式 (2.110)を加えると、

∂(ln ρ + M)

∂t
+ (u + a)

∂(ln ρ + M)

∂x
= 0, (2.111)

また、式 (2.108)から式 (2.110)を引くと、

∂ ln(ρ −M)

∂t
+ (u − a)

∂(ln ρ −M)

∂x
= 0, (2.112)

が得られる。すなわち、dx/dt = u+aの特性線の上では、J+ = ln ρ+Mが一定で、dx/dt = u−a

の特性線の上では、J− = ln ρ−Mが一定となる。この J±が等温の場合のRiemann不変量で
ある。
先に基礎方程式を対角化した時の変形を思いだそう（式 2.80-2.85）。

∂U

∂t
+ A

∂U

∂x
= 0, (2.113)

を

∂w1

∂t
+ λ1

∂w1

∂x
= 0, (2.114)

∂w2

∂t
+ λ2

∂w2

∂x
= 0, (2.115)

(2.116)

のように書き換えた。この等温のガスダイナミクスでは、dx/dt = u− aにそって、w1が一定、
dx/dt = u + aにそって、w2が一定に進化する。
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流束ヤコビアンAが一定で、微分演算と交換する時は、

LU = W , (2.117)

でこのベクトルW の成分 (w(1), w(2), . . .)が、特性線 dx/dt = λ1、dx/dt = λ2、. . .、の上で一
定（リーマン不変量と呼ぶ）、つまり

dW = d(LU) = 0, (2.118)

になるが、一般に、流束ヤコビアンAが一定ではないが対角化できる時、どのような量が一
定に保たれるかを考える。
式 (2.118)に対応するものが、

LdU = dW , (2.119)

であることは容易に理解できよう。これを成分表示すると、

(L)ildul = dwi, (2.120)

で、これは、duj の間に関係があることをしめしている。i番めの特性線に沿っては

(�(i))ldul = 0, (2.121)

が成り立つ。
これを、等温ガスの場合に適応して、J±が不変量になっていることを示してみよう。式 (2.84)

より、λ1 = u − aに対しては、左固有ベクトル（Lの第１行目のベクトル �(1)）は、

�(1) =
(

u + a

2a
− 1

2a

)
, (2.122)

で、式 (2.120)で、u1 = ρ、u2 = ρuであることに注意すると、

dw1 =
u + a

2a
dρ − 1

2a
d(ρu) = 0, (2.123)

展開すると
adρ − ρdu = 0, (2.124)

これから
d(M− log ρ) = 0, (2.125)

となり、先の J−が保存量であることが確かめられた。

問題 同じようにして、特性線 dx/dt = u + aに沿って、J+が保存量であることを示せ。
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図 2.6: 等温の衝撃波管問題。

2.5.3 等温の場合の衝撃波管の解析解

マイナス方向に希薄波が伝搬する。その上では右向きに伝わる特性線 dx/dt = u + a（C+）
に沿って、J+が一定である。特性線C+は、もっとも左側の静止している部分につながってい
ることに注意すると、

J+ = ln ρ + M = ln ρL, (2.126)

ここで ρLはもっとも左側の静止している部分の密度である。これから、

ρ

ρL

= exp(−M), (2.127)

が成り立つ。希薄波のテール（この場合もっとも右側）の密度と速度が、衝撃波後面のそれ
（U2、ρ2）に等しいことを用いると、

ρ2

ρL

= exp
(
−U2

a

)
, (2.128)

等温衝撃波の条件式 (2.105、2.106)から、もっとも右側の静止している衝撃波前面の密度 ρR

と、もっとも左側の静止している希薄の先の密度 ρLと、衝撃波の速度の関係が以下のように
得られる。

ρR

(
Vs

a

)2

ρL

= exp
[
−
(

Vs

a
− a

Vs

)]
, (2.129)

これは Vs/a = ξとおくと、

ξ2 exp

(
ξ − 1

ξ

)
=

ρL

ρR

, (2.130)

となる。この解は数値的に求めると、ρL/ρR = 10のときに、ξ = 1.75194...で ξ−1/x = 1.1811...

のように求められる。
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すなわち、初期の密度の不連続の位置を原点にとり、a = 1とすると、

ρ =




ρR x > ξt

ρRξ2 (ξ − 1
ξ
− 1)t < x < ξt

ρL exp(−M) −t < x < (ξ − 1
ξ
− 1)t

ρL x < −t

(2.131)

U =




0 x > ξt

ξ − 1
ξ

(ξ − 1
ξ
− 1)t < x < ξt

x + t

t
−t < x < (ξ − 1

ξ
− 1)t

0 x < −t

(2.132)

となる。これを数値計算の結果と比較する。

2.5.4 断熱気体の衝撃波管問題

一般の断熱気体については、第３日目にその流束ヤコビアンの固有値、固有ベクトルなどを
学ぶが、結果だけを述べると、

∂U

∂t
+ M

∂U

∂x
= 0, (2.133)

U =




ρ

vx

p


 ,M =




vx ρ 0

0 vx 1/ρ

0 γp vx


 , (2.134)

は、固有値は音速 cs = (γp/ρ)1/2を使って、

λ1 = u − cs, (2.135)

λ2 = u, (2.136)

λ3 = u + cs, (2.137)

(2.138)

であることがわかる。等温の場合との違いは、u± csに加えて、λ2 = uで伝搬する波が加わっ
たことである。
初期に不連続を持つ分布から進化した衝撃波管問題では、第３の特性線に対応して、衝撃波、

希薄波以外に第３の不連続が接触不連続面が発生する（場合がある）。
固有値 λiに属する、左固有ベクトル �(i)は、

�(1) =
1

2ρc2
s

(0,−ρcs, 1) (2.139)

�(2) =
1

ρc2
s

(
c2
s, 0,−1

)
(2.140)

�(3) =
1

2ρc2
s

(0, ρcs, 1) (2.141)
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図 2.7: 断熱気体の衝撃波管問題。点線は初期値 ρL = 1(−0.5 < x < 0)、ρR = 0.125(0 < x <

0.5)、pL = 1(−0.5 < x < 0)、pR = 0.1(0 < x < 0.5)、vxL = vxR = 0, γ = 1.4、実線は
t = 0.142の構造。計算法は修正ラックス・ベンドルフ法。右側に進んで行く衝撃波と、左側に
進んで行く希薄波、その間に接触不連続面が生じていることがわかる。



2.5. 衝撃波管問題 53

になるから、先に導いたように、LdU を作ると、
dx

dt
= u − csにそって �(1)dU =

1

2ρc2
s

(−ρcsdu + dp) = 0 (2.142)

dx

dt
= uにそって �(2)dU =

1

ρc2
s

(
c2
sdρ − dp

)
= 0 (2.143)

dx

dt
= u + csにそって �(3)dU =

1

2ρc2
s

(ρcsdu + dp) = 0 (2.144)

（λ2に属する波である）接触不連続面越えては、dx/dt = u− csと dx/dt = u + csの特性線
が左右を結んでいる。したがって接触不連続面越の左右で、

−ρcsdu + dp = 0 (2.145)

ρcsdu + dp = 0 (2.146)

となっていなければならないことがわかる。これから dp = 0、du = 0すなわち接触不連続面
では密度（及び温度）のみが不連続になることがわかる。

断熱気体の流体力学でのRiemann不変量

λ1に属する（つまり dx/dt = u− csの特性線が関係する）希薄波では、J+ = u+2cs/(γ −1)

および、エントロピー sが一定、λ3に属する希薄波では、J− = u − 2cs/(γ − 1)および、エン
トロピー sが一定となる。
これは以下のようにして示すことができる。λ1に属する特性線を跨いで、

dx

dt
= uにそって �(2)dU =

1

ρc2
s

(
c2
sdρ − dp

)
= 0 (2.147)

dx

dt
= u + csにそって �(3)dU =

1

2ρc2
s

(ρcsdu + dp) = 0 (2.148)

が成り立つが、これから、
ρcsdu + c2

sdρ = 0, (2.149)

これから、 ∫
du +

∫
cs

ρ
dρ = 0, (2.150)

が得られる。csが ρ(γ−1)/2に比例することを用いると、第２項も積分できて、

u +
2cs

γ − 1
= J+, (2.151)

が一定値をとる。
λ3に属する特性線を跨いでも同様の議論ができて、

u − 2cs

γ − 1
= J−, (2.152)

が一定値をとることが示せる。
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図 2.8: 断熱気体の衝撃波管問題。断熱気体の場合は、真空が現れない普通の問題については、
dx/dt = u ± csの特性線に関連した非線形の波が衝撃波か希薄波として現れ、その中間に、接
触不連続面を生じる。初期の密度、圧力、速度が、x < 0に対しては、ρL、pL、uL、x > 0に対
しては、ρR、pR、uRであるとき、中間（希薄波のテールの外、衝撃波の後ろ面）の速度と圧
力が u∗と p∗、接触不連続面の左側の密度が ρ∗L、右側の密度が ρ∗R、衝撃波の速度が Vsである
として、それらの間の関係を求めることによって、衝撃波管問題の解を求めることができる。

2.5.5 断熱気体の衝撃波管問題解析解 ∗

等温の時に示したように、断熱ガスの衝撃波管問題についても、iterationを用いて解析的に
解を求めることができる（リーマン解法プログラムと呼ぶ）。興味ある方々は以下を読んでい
ただきたい。
初期の密度、圧力、速度が、x < 0に対しては、UL = (ρL, pL, uL)、x > 0に対しては、

UR = (ρR, pR, uR)である Riemann問題を考える（図 2.8参照）。これらの値の組合せによっ
て、左右には衝撃波もしくは希薄波が伝搬する。左側に伝わる波（衝撃波もしくは希薄波）の
先の領域はULの状態が、右側に伝わる波（衝撃波もしくは希薄波）の先の領域はURの状態
が、保たれている。その間、ULとUR両方に依存する中間（希薄波のテールの外、衝撃波の
後ろ面）の領域の速度と圧力が u∗と p∗を求めよう。

p∗は、次の方程式の解 pで与えられる。

f(p,UL,UR) ≡ fL(p,UL) + fR(p,UR) + ∆u = 0, (2.153)

ここで、
∆u ≡ uR − uL, (2.154)

である。ここで、fLと fRは左、右に進む不連続が衝撃波か希薄波かによって次のように与え
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られる。

fL(p,UL) =




(p − pL)

(
AL

p + BL

)1/2

if p > pL (shock)

2aL

γ − 1



(

p

pL

)(γ−1)/(2γ)

− 1


 if p < pL (rarefaction)

(2.155)

fR(p,UR) =




(p − pR)

(
AR

p + BR

)1/2

if p > pR (shock)

2aR

γ − 1



(

p

pR

)(γ−1)/(2γ)

− 1


 if p < pR (rarefaction)

(2.156)

ここで、

AL =
2

(γ + 1)ρL

,

AR =
2

(γ + 1)ρR

,

BL =
γ − 1

γ + 1
pL,

BR =
γ − 1

γ + 1
pR, (2.157)

である。
この解を使って、u∗は

u∗ =
uL + uR

2
+

fR(p∗) − fL(p∗)
2

(2.158)

で与えられる。

左に進む衝撃波

左に進む衝撃波の場合の fLを求めてみよう。左に進む衝撃波の速度を VL < 0とする。VLで
動く座標での、ガスの速度は、ûL = uL − VL、û∗ = u∗ − VLである。ランキン・ユゴニオ条件
（式 2.94）は

ρLûL = ρ∗Lû∗, (2.159)

ρLû2
L + pL = ρ∗Lû2

∗ + p∗, (2.160)

(êL + pL)ûL = (ê∗L + p∗)û∗, (2.161)

で与えられる。ここで、ρ∗Lは接触不連続面の左側で左へ進む衝撃波の右側の密度を、ê∗Lは接
触不連続面の左側で左へ進む衝撃波の右側のガスの VLで動く座標で見た全エネルギーである。
通常行なうように、質量流束（式 2.160）を

QL = ρLûL = ρ∗Lû∗ (2.162)
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とおいて、他の式を書き換える。運動量流束の式 (2.161)から、

QL = − p∗ − pL

û∗ − ûL

= − p∗ − pL

u∗ − uL

, (2.163)

したがって、u∗を求める式として

u∗ = uL − p∗ − pL

QL

, (2.164)

が得られる。
また、ûL = QL/ρL、û∗ = QL/ρ∗Lを式（2.163）に代入すると、

Q2
L = − p∗ − pL

1

ρ∗L
− 1

ρL

(2.165)

となる。ランキン・ユゴニオ関係から密度と圧力の不連続の間の関係

ρL

ρ∗L
=

γ − 1

γ + 1

p∗
pL

γ − 1

γ + 1
+

p∗
pL

(2.166)

を、この式 (2.165)に代入すると、

Q2
L =

γ + 1

2

(
p∗ +

γ − 1

γ + 1
pL

)
ρL (2.167)

がえられる。これを式 (2.164)に代入すると、u∗と p∗の間の関係を表す式が得られ、

u∗ = uL − (p∗ − pL)

[
γ + 1

2

(
p∗ +

γ − 1

γ + 1
pL

)
ρL

]−1/2

, (2.168)

となり、この式は
u∗ = uL − fL(p∗,UL), (2.169)

で

fL(p∗,UL) = (p∗ − pL)

[
AL

p∗ + BL

]1/2

(2.170)

および
AL =

2

(γ + 1)ρL

, BL =
γ − 1

γ + 1
pL (2.171)

これは、衝撃波を通り抜けた後の u∗と p∗の間の関係を表す式で、先に上げた式 (2.155)の衝
撃波の場合に一致する。
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左に進む希薄波

希薄波の内部ではエントロピーの生成は起こらないので（起こるのは衝撃波のみ）、希薄波
をはさんで

ρ∗L = ρL

(
p∗
pL

)1/γ

(2.172)

が成り立つ。
式 (2.151)のリーマン不変量 J+が左に進む希薄波を越えて一定であることを用いると、

uL +
2csL

γ − 1
= u∗ +

2cs∗L
γ − 1

(2.173)

が成り立つ。ここで、音速 cs∗Lを

cs∗L = csL

(
p∗
pL

)(γ−1)/(2γ)

, (2.174)

で書き換えると、

u∗ = uL +
2csL

γ − 1


1 −

(
p∗
pL

)(γ−1)/(2γ)

 (2.175)

となる。これは、希薄波を通り抜けたガスがもつ u∗と p∗の間の関係を記述している。最初に
上げた式で希薄波の場合、すなわち、

u∗ = uL − fL(p∗,UL), (2.176)

fL(p∗,UL) =
2csL

γ − 1


( p∗

pL

)(γ−1)/(2γ)

− 1


 , (2.177)

と一致している。

右に進む衝撃波

左に進む場合と同様の計算を行なえば、

u∗ = uR + fR(p∗,UR), (2.178)

で

fR(p∗,UR) = (p∗ − pR)

[
AR

p∗ + BR

]1/2

(2.179)

および
AR =

2

(γ + 1)ρR

, BR =
γ − 1

γ + 1
pR (2.180)
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右に進む希薄波

左に進む場合と同様の計算を行なえば、

u∗ = uR + fR(p∗,UR), (2.181)

fR(p∗,UR) =
2csR

γ − 1


( p∗

pR

)(γ−1)/(2γ)

− 1


 , (2.182)

断熱ガスのリーマン解法

左側の波が与える u∗と右側のそれが等しい条件から、

uR + fR(p∗,UR) = uL − fL(p∗,UL), (2.183)

書き換えると、
fR(p∗,UR) + fL(p∗,UL) + uR − uL = 0, (2.184)

で、この式を、満足する p∗の値が実現する中間の領域の圧力である。p∗が一端求まれば、

u∗ = uR + fR(p∗,UR), (2.185)

または
u∗ = uL − fL(p∗,UR), (2.186)

を用いれば、中間の領域の速度が求められる。
最後に、衝撃波、希薄波の伝搬速度を求めておこう。左に進む衝撃波面の速度は

ρL(uL − VL) = ρ∗L(u∗ − VL) = QL (2.187)

から

VL = uL − QL

ρL

, (2.188)

であり、式 (2.163)を用いれば、衝撃波の速度を決めることができる。
次に希薄波についても同じように左に進むものを考えると、希薄波の頭 (Head)と尾 (Tail)

はそれぞれ異なるリーマン不変量を持つ dx/dt = u− csで進む特性線に一致している。すなわ
ち、希薄波の頭と尾の進行速度、SHLおよび STLは

SHL = uL − aL, STL = u∗ − a∗L, (2.189)

となる。また、接触不連続面は
S0 = u∗, (2.190)

で伝搬する。
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例題

図 2.7に示した衝撃波管問題を解析的に解いてみよう。
ρL = 1、ρR = 0.125、pL = 1、pR = 0.1、uL = uR = 0、γ = 1.4から、式 (2.153)を満足す

る pを数値的に求めると、p∗ = 0.30313、u∗ = 0.92745のようになる。
これから、ρ∗L = 0.42632、ρ∗R = 0.26557、SHL = −1.18322、STL = −0.07027、S0 = u∗ =

0.92745、VR = 1.75216、t = 0.142での位置を求めると、希薄波の頭 x = −0.16802、希薄波の
尾の位置 x = −0.00998、衝撃波の位置 x = 0.24881のように求めることができる。

練習問題：図 2.7に示した衝撃波管問題の解析解を求めるプログラムを作成せよ。

参考文献
この章の参考文献として、以下のものを上げておく。

(1)宇宙流体力学 坂下志郎、池内了 培風館
(2)流体力学 巽友正 培風館
(3)流体力学の数値計算法 藤井孝蔵 東京大学出版会（初期の版には誤植が多いので注意必要）
(4) Riemann Solvers and Numerical Methods for Fluid Dynamics 2nd Edition E.F.Toro Springer

(1)、(2)はここで取り扱う圧縮性の流体力学についても詳しく記述してある教科書で、基礎
方程式の導出、ランキン・ユゴニオ関係の導出など、ここで記述をはしょった部分について参
考にして欲しい。(3)、(4)は数値流体力学の教科書。
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第3章 流体および磁気流体力学方程式の風
上差分

花輪知幸（名大理）

3.1 はじめに
私たちは初日に移流方程式やBurgers 方程式の数値解法として、風上差分法を習った。風上

差分法は衝撃波の取り扱いに優れていることや、非物理的な数値振動を起こさない (=TVD条
件を遵守する)ことを学んだ。昨日は、流体力学方程式や磁気流体力学方程式は波動方程式の
集合体—システム方程式—であることを学んだ。この 2日間の学習成果を総合すると、風上差
分法は流体力学方程式や磁気流体力学方程式の数値解法としても有効であろうと容易に想像で
きる。実際、衝撃波を伴う (磁気)流れを解析する方法として多くの数値計算コードに採用され
ている。
「流束は風上で評価せよ」という風上差分法の原理 (概念)は単純であるが、これを実際に流
体力学方程式や磁気流体力学方程式に応用することは簡単ではない。最初に習った線型波動方
程式は 1成分で波の位相速度が一定であったのに対し、流体力学方程式は連立であり波の速度
も時間や場所によって異なるためである。これらの違いをまとめたのが表 3.1である。

名称 変数 自由度 線型/非線型 方程式
移流方程式 u 1 線型 3.1

Burgers方程式 u 1 非線型 3.2, 3.3

Maxwell方程式 Ey, Ez, Bx, By 4 線型 3.4, 3.5

流体力学方程式 ρ, v, P 3 非線型 3.6

磁気流体力学方程式 ρ, vx, vy, vz, By, Bz 7 非線型 3.7

表 3.1: さまざまな波動方程式の比較。変数の数は独立変数を (x, t) とした 1次元の場合で数
えた。

移流方程式
∂u

∂t
+ c

∂u

∂x
= 0 (3.1)

Burgers 方程式 [波の速度を明示した形式 (上)と流束を明示した形式 (下)

∂u

∂t
+ u

∂u

∂x
= 0 (3.2)
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∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 (3.3)

(真空中の)Maxwell 方程式 [ベクトル形式と成分ごとに分解した形式]

1

c

∂E

∂t
− ∇ × B = 0

1

c

∂B

∂t
+ ∇ × E = 0 (3.4)

∂Ey

∂t
+ c

∂Bz

∂x
= 0

∂Ez

∂t
− c

∂By

∂x
= 0

∂By

∂t
− c

∂Ez

∂x
= 0

∂Bz

∂t
+ c

∂Ey

∂x
= 0 (3.5)

流体力学方程式

∂

∂t




ρ

ρv
ρv2

2
+

P

γ − 1


 +

∂

∂x




ρv

ρv2 + P
ρv3

2
+

γ Pv

γ − 1


 = 0 (3.6)

磁気流体力学方程式

∂

∂t




ρ

ρvx

ρvy

ρvz

By

Bz

ρE




+
∂

∂x




ρu

ρu2 + P +
By

2 + Bz
2 − Bx

2

8π

ρuv − BxBy

4π

ρuw − BxBz

4π
Byu − vBx

Bzu − wBx

ρHu − Bx (Bxu + Byv + Bzw)

4π




= 0 (3.7)

E =
u2 + v2 + w2

2
+

P

(γ − 1) ρ
+

Bx
2 + By

2 + Bz
2

8πρ
(3.8)

H =
u2 + v2 + w2

2
+

γP

(γ − 1) ρ
+

Bx
2 + By

2 + Bz
2

4πρ
(3.9)

この表では波動方程式が数学的に易しいほうから難しい方へと並べられている。Burgers方程
式は非線型なので移流方程式より難しい。Maxwell方程式は連立方程式で変数が多いので難し
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い。流体力学方程式は非線型である上に連立なので一層難しい。また変数が増えるので、磁気
流体力学方程式はさらに一層難しい。
最初から流体力学方程式や磁気流体力学方程式の風上差分を考えるのは難しいので、本講義

では最初にMaxwell方程式を例にとり、連立方程式の解き方を学ぶ。次にBurgers方程式の風
上差分を簡単におさらいし、流体力学および磁気流体力学の風上差分を学ぶ。

3.2 Maxwell方程式の数値解法
Maxwell 方程式 (3.5)の 1段目と 4段目の和と差、2段目と 3段目の和と差は

∂

∂t
(Ey + Bz) + c

∂

∂x
(Ey + Bz) = 0 (3.10)

∂

∂t
(Ey − Bz) − c

∂

∂x
(Ey − Bz) = 0 (3.11)

∂

∂t
(Ez + By) − c

∂

∂x
(Ez + By) = 0 (3.12)

∂

∂t
(Ez − By) + c

∂

∂x
(Ez − By) = 0 (3.13)

と表される。このように書き換えると 1段目の従属変数はEy + Bz だけとなる。従って改め
て u = Ey + Bz と置き換えると、この方程式は移流方程式に変形できることが分かる。2段
目以降も同様なので、

∂w1

∂t
+ c

∂w1

∂x
= 0 (3.14)

∂w2

∂t
− c

∂w2

∂x
= 0 (3.15)

∂w3

∂t
− c

∂w3

∂x
= 0 (3.16)

∂w1

∂t
+ c

∂w4

∂x
= 0 (3.17)

w1 = Ey + Bz (3.18)

w2 = Ey − Bz (3.19)

w3 = Ez − By (3.20)

w4 = Ez + By (3.21)

Ey =
w1 + w2

2
(3.22)

Ez =
w3 + w4

2
(3.23)

By =
w1 − w2

2
(3.24)

Bz =
w3 − w4

2
(3.25)

と書き換えられる。Maxwell方程式は式 (3.14)-(3.17)のような移流方程式の集まりである。こ
れらはそれぞれ独立なので、初日に習った風上差分法で解くことができる。この移流方程式の
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図 3.1: 変数Ey, Bz, w1, w4の関係を幾何学的に示した図。

変数w1, w2, w3, w4は式 (3.18)- (3.21)より求めることができる。また式 (3.22)-(3.25)を用いれ
ば、Ey, Ez, By, Bzを求めることができる (図 3.2)。

[発展問題] 変数Ey + BzやEy − Bz の物理的な意味を述べよ。

上記の結果を見通しよくするために、行列を使って計算してみよう。

∂

∂t




Ey

Ez

By

Bz


 +




0 0 0 c

0 0 −c 0

0 −c 0 0

c 0 0 0




∂

∂x




Ey

Ez

By

Bz


 = 0 (3.26)

∂u

∂t
+ A

∂u

∂x
(3.27)

u =




Ey

Ez

By

Bz


 (3.28)

A =




0 0 0 c

0 0 −c 0

0 −c 0 0

c 0 0 0


 (3.29)
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方程式 (3.27)を移流方程式 [式 (3.1)]と比較すると、変数 uがベクトルになったのに伴い、波
の速度 cが行列Aに変化していることに気づく。Maxwellの方程式に現れる波の速度±cは、
行列Aの固有値として求めることができる。

|A − λ I| = 0 (3.30)

ここで Iは単位行列を表す。具体的に計算すると∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 c

0 −λ −c 0

0 −c −λ 0

c 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣
= 0 ↔ (λ − c)2 (λ + c)2 = 0 (3.31)

このようにして求まった固有値 (λk) と右固有ベクトル (rk)

A rk = λk rk (3.32)

r1 =




1/2

0

0

1/2


 , λ1 = c (3.33)

r2 =




1/2

0

0

−1/2


 , λ2 = −c (3.34)

r3 =




0

1/2

1/2

0


 , λ3 = −c (3.35)

r4 =




0

1/2

−1/2

0


 , λ4 = c (3.36)

が求められる。この右固有ベクトルと式 (3.22)-(3.25)が類似しているので、ベクトルuを右固
有ベクトルの線型結合

u =




Ey

Ez

By

Bz


 = w1 r1 + w2 r2 + w3 r3 + w4 r4 =

4∑
k=1

wk rk (3.37)
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で表すことができる。これからの計算を簡単にするため、縦ベクトルw、横ベクトル tw、行
列Rを

w =




w1

w2

w3

w4


 (3.38)

tw = (w1, w2, w3, w4) (3.39)

R =




tr1

tr2

tr3

tr4


 =




1/2 0 0 1/2

0 1/2 1/2 0

0 1/2 −1/2 0

1/2 0 0 −1/2


 (3.40)

と定義すると
u = Rw (3.41)

と表すことができる。この行列Rの逆行列をLとすると、

L =




1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1


 =




�1

�2

�3

�4


 (3.42)

�1 = (1/2, 0, 0, 1/2) = 2 tr1 (3.43)

�2 = (1/2, 0, 0, −1/2) = 2 tr2 (3.44)

�3 = (0, 1/2, 1/2, 0) = 2 tr3 (3.45)

�4 = (0, 1/2, −1/2, 0) = 2 tr4 (3.46)

従って逆行列Lは、Rの行と列を入れ替え 2倍したものに他ならない。これは固有ベクトル
が互いに直行していて、その長さが |rk|2 = 2だからである。このため逆行列Lの各行もやは
り行列Aの (左)固有ベクトルとなる。

�kA = λk �k (3.47)

この逆行列を使うと、式 (3.18)-(3.21)は、

w = Lu (3.48)

とまとめられる。これは式 (3.41)にLを掛け、右辺と左辺を取り替えたものとも等しい。
このようにして決められた行列RとLを使うと、

∂u

∂t
+ A

∂u

∂x
= 0 (3.49)
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∂(Lu)

∂t
+ Λ

∂(Lu)

∂x
= 0 (3.50)

RL = LR = I (3.51)

Λ = LAR =




−c 0 0 0

0 c 0 0

0 0 c 0

0 0 0 −c


 (3.52)

ここまでの一連の計算は、線型代数の時間に習った行列の対角化である。1

変数w = Luについての方程式は独立で線型な移流方程式の集まりなので、これらはそれ
ぞれ 1章で習った風上差分で解ける。求まった値を変換によりu = Lwに戻せばMaxwell方
程式も解ける。

この節の教訓: 連立方程式 (システム方程式)では波の速度が行列で表されるので、行列の
固有値・固有ベクトルを計算し、成分ごとの簡単な方程式にすると良い。

3.3 Burgers方程式の復習とMaxwell方程式の風上数値流束
Burgers方程式では変数 uの値により波の位相速度が変わる。またMaxwell 方程式では成分

により位相速度が±cの値をとる。このように位相速度が一定で無い場合の風上数値流束を復
習しよう。

Burgers 方程式の場合

uj(t + ∆t) = uj(t) − ∆t

∆x
(f̃j+1/2 − f̃j−1/2) (3.53)

f̃j+1/2 =




[uj(t)]
2

2
[uj+1(t) + uj(t) > 0]

[uj+1(t)]
2

2
[uj+1(t) + uj(t) ≤ 0]

(3.54)

式 (3.54)は

f̃j+1/2 =
1

2

[
[uj+1(t)]

2 + [uj(t)]
2

2
−
∣∣∣∣uj+1 + uj

2

∣∣∣∣ (uj+1 − uj)

]
(3.55)

この結果から類推すると、対角化されたMaxwell方程式は

∂w

∂t
+ LAR

∂w

∂x
=

∂w

∂t
+

∂fw

∂x
= 0 (3.56)

fw = LAR w = Λw (3.57)

1第 2章でも同様に行列の対角化を行った。
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なので、これを風上差分化した公式は

wj(t + ∆t) = wj(t) − ∆t

∆x
(f̃w,j+1/2 − f̃w,j−1/2) (3.58)

f̃w,j+1/2 =
1

2

[
fw,j+1 + fw,j − |Λ| (wj+1 − wj)

]
(3.59)

と予想される。ここで行列 |Λ|は対角行列の絶対値なので、対角要素の絶対値をとったもの

|Λ| =




c 0 0 0

0 c 0 0

0 0 c 0

0 0 0 c


 = c (3.60)

と定義する。
元の変数で考えると

∂u

∂t
+ A

∂u

∂x
=

∂u

∂t
+

∂fu

∂x
= 0 (3.61)

fu = A u (3.62)

なので、これを風上差分化した公式は

uj(t + ∆t) = uj(t) − ∆t

∆x
(f̃u,j+1/2 − f̃w,j−1/2) (3.63)

f̃u,j+1/2 = Rf̃w,j+1/2 (3.64)

=
1

2

[
fu,j+1 + fu,j − R |Λ|L (uj+1 − uj)

]
(3.65)

式 (3.65)は流体力学で使う数値流束と形の上でそっくりとなる。

3.4 流体力学方程式の風上差分
これまでに見てきたように、風上差分の計算では波の位相速度を求める操作が欠かせない。

具体的には

1. 微分方程式を
∂u

∂t
+ A

∂u

∂x
= 0 の形に書き直し、「速度行列」Aを求める。

2. 速度行列 Aの固有値を求める。
3. 速度行列 Aの固有ベクトルを求める。
4. 固有値と固有ベクトルより数値流束を求める。

という演算が必要である。以下ではそれぞれについて説明する。

ステップ 1 速度行列を求める。
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∂u

∂t
+

∂f

∂x
= 0 (3.66)

を合成関数の微分則を使って書き換えると、

∂u

∂t
+ A

∂u

∂x
= 0 (3.67)

A =
∂f

∂u
(3.68)

(A)i,j =
∂fi

∂uj

(3.69)

が得られる。
流体力学方程式では

u =




ρ

ρv
ρv2

2
+

P

γ − 1


 =




ρ

ρv

ρE


 (3.70)

f =




ρv

ρv2 + P
ρv3

2
+

γ Pv

γ − 1


 =




ρv
(ρv)2

ρ
+ (γ − 1)

(
ρv2

2
+

P

γ − 1

)

ρv

ρ

[
1 − γ

2

(ρv)2

ρ
+ γ (ρE)

]




(3.71)

E =
v2

2
+

P

(γ − 1) ρ
(3.72)

H =
v2

2
+

γ P

(γ − 1) ρ
(3.73)

上記の変形は f をu で偏微分するため。2章でも等温の場合に同様の変形を行った。

A =




0 1 0

− 3 − γ

2
v2 (3 − γ) v γ − 1(

γ − 1

2
v2 − H

)
v H − (γ − 1) v2 γv


 (3.74)

ステップ 2 固有値を求める。
|A − λ I| = 0より、

λ1 = v + cs (3.75)

λ2 = v (3.76)

λ3 = v − cs (3.77)

cs =

√
γP

ρ
(3.78)
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ステップ 3 固有ベクトルを求める。

r1 =




1

v + cs

H + v cs


 (3.79)

r2 =




1

v
v2

2


 (3.80)

r3 =




1

v − cs

H − v cs


 (3.81)

�1 =

[
1

2

(
v2

2

γ − 1

c2
s

− u

cs

)
,

1

2

(
1

cs

− γ − 1

c2
v

)
,

γ − 1

2 c2
s

]
(3.82)

�2 =

[
1 − v2

2

γ − 1

c2
s

,
γ − 1

c2
s

v , − γ − 1

c2
s

]
(3.83)

�3 =

[
1

2

(
v2

2

γ − 1

c2
s

+
u

cs

)
,

1

2

(
1

cs

+
γ − 1

c2
v

)
,

γ − 1

2 c2
s

]
(3.84)

ここまでに見てきたように、流体力学方程式では速度行列Aが密度・速度・圧力の関数なの
で、場所によりその値が異なる。従って固有値や固有ベクトルも場所によって異なる。このた
め数値流束を計算する際に、どこの密度・速度・圧力を使って計算するのかという疑問がうま
れる。これに対して Roe (1981) は

ρ̄ =
√

ρj+1ρj (3.85)

v̄ =

√
ρj+1vj+1 +

√
ρjvj√

ρj+1 +
√

ρj

(3.86)

H̄ =

√
ρj+1Hj+1 +

√
ρjHj√

ρj+1 +
√

ρj

(3.87)

c̄2
s = (γ − 1)

(
H̄ − v̄2

2

)
(3.88)

を使って「平均量」を計算すれば良いことを見いだした。この平均の取り方を Roe 平均と呼
ぶこともある。

Roe 平均で速度や単位質量当たりのエネルギーは
√

ρで重みをとった平均。一方、密度や圧
力は 1/

√
ρで重みをとった平均。ちょっと予想外なのは平均化された音速 (c̄s)。音速は温度 (=
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圧力と密度の比)によって決まるのだが、なぜか音速 c̄sの計算に速度 vも使う。式 (3.88)を計
算すると、

c̄2
s = γ

Pj+1√
ρj+1

+
Pj√
ρj√

ρj+1 +
√

ρj

+
γ − 1

2

√
ρj+1 ρj

(
√

ρj+1 +
√

ρj)2
(vj+1 − vj)

2 (3.89)

が得られる。この式は、速度勾配があると (vj+1 �= vj)、その分だけ平均音速が上昇すること
を示している。
この Roe平均で計算したA (uj+1, uj)は任意 uj と uj+1に対して、Property Uとよばれ

る以下の 3条件、

i) (f j+1 − f j) = A (uj+1, uj) (uj+1,−uj)

ii) 固有値はすべて実数 (波の速度はすべて実数)

iii) uj+1 = ujの場合、A = ∂f/∂u

を満たす。時間の関係で省略するが、Property U を満たす平均の取り方はこれ一つに限られ
ることも証明できる。詳しくは Hirsch あるいは藤井の教科書に書かれている。

uj(t + ∆t) = uj(t) − ∆t

∆x
(f̃u,j+1/2 − f̃u,j−1/2) (3.90)

f̃u,j+1/2 = Rf̃w,j+1/2 (3.91)

=
1

2

[
fu,j+1 + fu,j − R |Λ|L (uj+1 − uj)

]
(3.92)

形式的にはMaxwell方程式の風上差分と同じであるが、波の速度行列Λ = LARは流れによ

り変化する量である。絶対値をとると

|Λ| =




|v + c| 0 0

0 |v| 0

0 0 |v − c|


 (3.93)

この節の教訓: 数値流束の計算に必要なものは、波の位相速度 (固有値 λk)と波の固有モード
(固有ベクトル rkと �k)である。これらの量は場所とともに変化するので、適切な平均量 (Roe

平均)を使う。

3.5 磁気流体力学方程式の風上差分化
流体力学方程式のところで分かったように数値流束に直接現れる量は、固有値と固有ベクト

ルである。磁気流体力学方程式では変数が増えるので計算がさらに厄介になる。ここでは計算
結果だけを述べる。固有値や固有ベクトルは、流体力学方程式の時と同様に特殊な平均量を
使って計算する。
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ベクトル形式で記述した 1次元磁気流体力学方程式

u =




ρ

ρu

ρv

ρw

By

Bz

ρE




(3.94)

f =




ρu

ρu2 + P +
By

2 + Bz
2 − Bx

2

8π

ρuv − BxBy

4π

ρuw − BxBz

4π
Byu − vBx

Bzu − wBx

ρHu − Bx (Bxu + Byv + Bzw)

4π




, (3.95)

E =
u2 + v2 + w2

2
+

P

(γ − 1) ρ
+

Bx
2 + By

2 + Bz
2

8πρ
, (3.96)

H =
u2 + v2 + w2

2
+

γP

(γ − 1) ρ
+

Bx
2 + By

2 + Bz
2

4πρ
, (3.97)

1次元の磁気流体力学方程式には、fast 波 (右向きと左向き)、slow 波 (右向きと左向き)、
Alfvén 波 (右向きと左向き)、エントロピー波の 7種類の波 (固有値・固有ベクトル) が存在す
る。流体力学で見てきたように、右向きと左向きの固有値と固有ベクトルは速度の符号が違う
だけでよく似ている。紙数を節約するために以下では次のように fast波、slow波、Alfvén波
の固有値・固有ベクトルを次のようにまとめて記述する。
固有値と (右)固有ベクトル

r1,7 = Ru±cf
, r2,6 = Ru±bx , r3,5 = Ru±cs , r4 = Ru , (3.98)

λ1,7 = ū ± cf , λ2,6 = ū ± bx , λ3,5 = ū ± cs , λ4 = ū , (3.99)

流体力学の時と同様に、これらの固有値と固有ベクトルは uj と uj+1の平均量を使って評
価する必要がある。Brio & Wu (1988) は γ = 2の場合に、Property U を満たす平均が存
在することを示した。Brio & Wu (1988) に比べて少し複雑ではあるが、現在は一般の γに対
して Property Uを満たす固有値・固有ベクトルも知られている。以下では一般の γについて
Property Uを満たす固有値・固有ベクトルを示す。2

2Property Uの条件 (i)は第 2章で習った衝撃波のランキンユゴニオ条件と関係がある。どちらも非線型性を
考慮している。
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Ru±c =




1

ū ± c

v̄ ∓ BxB̄yc

4πρ̄(c2 − bx
2)

w̄ ∓ BxB̄zc

4πρ̄(c2 − bx
2)

B̄yc
2

ρ̄(c2 − bx
2)

B̄zc
2

ρ̄(c2 − bx
2)

ū2 + v̄2 + w̄2

2
+

c2

γ − 1
± cū + χ + δb2




, (3.100)

Ru±bx =




0

0

∓B̄z sgn(Bx)

±B̄y sgn(Bx)

B̄z

√
4π

ρ̄

− B̄y

√
4π

ρ̄
∓ (B̄z v̄ − B̄yw̄) sgn(Bx)




(3.101)

Ru =




1

ū

v̄

w̄

0

0
ū2 + v̄2 + w̄2

2
+ δb2




(3.102)

χ = ∓ Bxc (B̄yv̄ + B̄zw̄)

4πρ̄ (c2 − b2
x)

+
γ − 2

γ − 1
(c2 − a2) (3.103)

δb2 =
γ − 2

γ − 1

(By, j+1 − By, j)
2 + (Bz, j+1 − Bz, j)

2

8π (
√

ρj+1 +
√

ρj)2
(3.104)

cf, s
2 =

a∗2 ±
√

a4∗ − 4a2bx
2

2
(3.105)

bx =
|Bx|√
4πρ̄

(3.106)

a∗2 = (γ − 1)
(
H̄ − ū2 + v̄2 + w̄2

2
− δb2

)
− (γ − 2)

(Bx
2 + B̄y

2 + B̄z
2

4πρ̄

)
(3.107)
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a2 = (γ − 1)
(
H̄ − ū2 + v̄2 + w̄2

2
− δb2 − Bx

2 + B̄y
2 + B̄z

2

4πρ̄

)
(3.108)

v̄ =

√
ρjvj +

√
ρj+1vj+1√

ρj +
√

ρj+1

(3.109)

w̄ =

√
ρjwj +

√
ρj+1wj+1√

ρj +
√

ρj+1

(3.110)

B̄y =

√
ρj+1By, j +

√
ρjBy, j+1√

ρj +
√

ρj+1

(3.111)

B̃y =
By, j + By, j+1

2
(3.112)

B̄z =

√
ρj+1Bz, j +

√
ρjBz, j+1√

ρj +
√

ρj+1

, (3.113)

B̃z =
Bz, j + Bz, j+1

2
(3.114)

上記の公式で (3.100)は、fast波と slow波の両方の固有ベクトルを表している。波の速度 cに
cf を代入すれば fast波の固有ベクトルが、csを代入すれば slow 波の固有ベクトルが得られる。
また csとの混同を避けるため、音速は aで表されている。
実際に磁気流体力学方程式の数値流束を計算するためには、上記の式に少し工夫を加える必

要がある。工夫が必要となるのは、固有値が等しくなる (縮退する)場合である。気をつけて上
記の式を運用しないと、固有ベクトルが独立でなくなる場合がある。この問題を回避するため
に、Ryu & Jones (1995) は変数に工夫を凝らした。上記の公式にこの工夫を加えると以下の
ようになる。

R1,7 =




αf

αf (ū ± cf)

αf v̄ ∓ αsβybx sgn (Bx)

αf w̄ ∓ αsβzbx sgn (Bx)

αsβycf

√
4π/ρ̄

αsβzcf

√
4π/ρ̄

αf

{ ū2 + v̄2 + w̄2

2
+ δb2 ± cf ū +

cf
2

γ − 1

+
γ − 2

γ − 1
(cf

2 − a2)
}
∓ αsbxsgn(Bx) (βyv̄ + βzw̄)




(3.115)
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R2,6 =




0

0

∓βz sgn(Bx)

±βy sgn(Bx)

βz

√
4π/ρ̄

−βy

√
4π/ρ̄

∓ (βz v̄ − βyw̄) sgn(Bx)




(3.116)

R3,5 =




αs

αs (ū ± cs)

αsv̄ ± αfβya sgn (Bx)

αsw̄ ± αfβza sgn (Bx)

− αf βya
2
√

4π

cf

√
ρ̄

− αf βza
2
√

4π

cf

√
ρ̄

αs

{ ū2 + v̄2 + w̄2

2
+ δb2 ± csū +

cs
2

γ − 1
+

γ − 2

γ − 1
(cs

2 − a2)
}

±αfasgn(Bx) (βyv̄ + βzw̄)




(3.117)

R4 =




1

ū

v̄

w̄

0

0
ū2 + v̄2 + w̄2

2
+ δb2




(3.118)

αf =

√
cf

2 − bx
2√

cf
2 − cs

2
(3.119)

αs =

√
cf

2 − a2√
cf

2 − cs
2

=
cf

bx

√
bx

2 − cs
2√

cf
2 − cs

2
(3.120)

βz =
B̄z√

B̄y
2 + B̄z

2
, (3.121)

βy =
B̄y√

B̄y
2 + B̄z

2
(3.122)
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平均磁場が 0の場合 (B̄y = B̄z = 0)は βy と βz は

βy = 1 and βz = 0 (3.123)

と定義される。また cf = cs = a = bxの場合、αf と αs は

αf = 1 and αs = 0 (3.124)

βy
2 + βz

2 = 1 , (3.125)

αf
2 +

bx
2

cf
2
αs

2 = 1 (3.126)

と定義される。

w2 =
1

2

[
−ρ̄ (βz∆v − βy∆w) sgn(Bx) +

√
ρ̄

4π
(βz∆By − βy∆Bz)

]
(3.127)

w6 =
1

2

[
ρ̄ (βz∆v − βy∆w) sgn(Bx) +

√
ρ̄

4π
(βz∆By − βy∆Bz)

]
(3.128)

w1 + w7 =
αf

cf
2

(
∆P +

B̃y∆By + B̃z∆Bz

4π

)

+
{ αs

a2cf

[
(γ − 1) c2

s − (γ − 2) a2
]√

4πρ̄

+ (γ − 2)
√

B̄y
2 + B̄z

2
αf

cf
2

} βy∆By + βz ∆Bz

4π
, (3.129)

w1 − w7 =
αf

cf

ρ̄∆u − αscs

cfa
sgn(Bx)ρ̄(βy∆v + βz∆w) , (3.130)

w3 + w5 =
αs

a2

(
∆P +

B̃y∆By + B̃z∆Bz

4π

)

+
{
αf

[γ − 2

cf

− (γ − 1)
cf

a2

]√
4πρ̄

+ (γ − 2)
√

B̄y
2 + B̄2

z

αs

a2

} βy∆By + βz ∆Bz

4π
, (3.131)

w3 − w5 =
αsbx

cfa
ρ̄∆u +

αf

a
sgn(Bx)ρ̄(βy∆v + βz∆w) , (3.132)

w4 = ρj+1 − ρj − αCf (w1 + w7) − αs (w3 + w5) , (3.133)

∆P = Pj+1 − Pj , (3.134)

∆By = By, j+1 − By, j , (3.135)

∆Bz = Bz, j+1 − Bz, j . (3.136)
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R4 =




1

ū

v̄

w̄

0

0
ū2 + v̄2 + w̄2

2
+ δb2 + ε




, (3.137)

and

ε =
ρj+1ej − ρjej − (Pj+1 − Pj)/(γ − 1)

w1

. (3.138)

3.6 さらに勉強する人へ
時間が限られているので、講義内容は基本的な概念に絞った。そのため実用的なコードを作

成するのに必要な知識のいくつかを割愛せざるを得なかった。ここでは割愛した中でも重要な
項目と、それについての参考書を示す。

1. 膨張衝撃波 (expansion shock)の回避

ポイント波の位相速度 λkが、λk,j < 0 かつ λk,j+1 > 0である時に、Roeの方法は不自然
な解 (expansion shock)を生むことがある。回避法は良く知られている。

参考書 Hirsch の教科書 pp. 467–469

2. 数値流束の 2次精度化

ポイントここで講義した風上差分法は時間空間ともに 1次精度であるが、これ時間空間
ともに 2次精度に拡張して使うのが普通である。よく用いられる方法としてMUSCL

法がある。

参考書 藤井の教科書 第 3章

3. Godunov の定理とTVD条件

ポイント高次精度の数値流束を使うと、1次精度風上差分では回避された数値振動が現
れやすくなる。Godunov の定理はこれを回避するための基礎理論として有名。また
TVD条件は数値振動が起こさないための十分条件として有名。簡単な解説は 1章に
掲載されている。

参考書 藤井の教科書 第 3章

4. 流速制限関数 (flux limiter)

ポイント MUSCL法で使われる。流速制限関数が必要であることはGodunov の定理より
導かれる。1章で紹介されたminmod関数はその 1例。
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参考書 藤井の教科書 第 3章

5. MUSCL法の (磁気)流体力学方程式への適用

ポイントシステム方程式にMUSCLを適用する手順は予想外に面倒である。特に磁気流
体力学の場合は工夫が必要である。具体的な手順の例はFukuda & Hanawa (2000)に
載っている。

6. Property U

ポイント Property Uが何故必要なのか。またRoeの平均はどのようにして導かれたのか。
原理的な理解のために学習することは益。

参考書 Hirsch の教科書 pp. 463–465

7. 円筒座標および極座標での計算

ポイント 2次元シミュレーションでは円筒座標や極座標が役に立つ場合が多い。これらの
座標を用いるときは少し工夫が必要である。

8. 一般的な状態方程式への拡張

ポイントこの講義や普通の教科書で扱うのは理想的な状態方程式だけである。しかし一
般的な状態方程式の場合にも風上差分を拡張することができる。

参考書 Nobuta & Hanawa (1999)

参考文献
(1)藤井孝藏, 1994, 流体力学の数値計算法, 東大出版会
(2) M. Brio and C. C. Wu, 1988, J. Comput. Phys., vol. 75, p. 400

(3) N. Fukuda and T. Hanawa, 2000, Astrophys. J., vol. 533, p. 911

(4) C. Hirsch, 1990, Numerical Computation of Internal and External Flows, vol. 2: Compu-

tational Methods for Inviscid and Viscous Flows, Wiley

(5) K. Nobuta & T. Hanawa 1999, Astrophys. J., vol. 510, p. 614

(6) P. L. Roe, 1981, J. Comput. Phys., vol. 43, p. 357

(7) D. Ryu and T. W. Jones, Astrophys. J., vol. 442, p. 228



CIP法入門

「天体とスペースプラズマのシミュレーションサマースクール」
2002年 9月 11日-9月 15日

場所：名古屋大学情報メディア教育センター

1 CIP法の基礎概念

双曲型の微分方程式を解く数値計算手法は、差分法だけでもこれまで様々

な手法が提案されてきたが [1]、Yabeらによって提案された CIP(Cubic In-
terpolated Profile[2][3] 法も高次精度差分法の一つであり、これまで流体力学
を始め様々な分野で応用され、成果を上げている。本文ではこの CIP法の導
入とその応用、最後に最近提案された保存保証型 CIP法について触れる事に
する。関数 f(x, t)に対する次の微分方程式を考える。

∂f

∂t
+ u

∂f

∂x
= 0 (1)

例えば uが一定値の場合、この方程式の解析解は良く知られている様に次

式で表される。

f(x, t) = f(x − ut, 0) (2)

この解は初期条件のプロファイルが速度 uで平行移動する事を意味している。

（図 1)
この方程式を差分法で解く時は、格子間を補間関数（多項式）で近似する

事から始める。

実際の系では、速度 uは時間的・空間的に一定値ではなく変化する事もあ

るが、短い時間 ∆t内であれば各格子点 xi 上の速度 ui はそれぞれ一定値と

みなせる。よって、式 (2)を用いて

f(xi, t + ∆t) ≈ f(xi − ui∆t, t) (3)

1



ut

)(xf

0.0=t tt =

図 1: 関数の平行移動

としてよい。つまり、ある時刻 tにおける格子点 xi上の物理量が分かってい

れば∆t秒後の物理量は式 (3)で求まる事になる。
最も簡単な例は 2点間を 1次関数で補間する「1次風上差分法」である。し

かしこの手法の場合、プロファイルが移動するに従って解が緩やかになってし

まう（図 2：数値拡散）他にも 3点を用いて 2次関数で補間する「Lax-Wendroff
法」など様々な手法があるが、数値拡散・位相誤差による数値振動等が見ら

れる事がある。

���

tui∆

ix1−ix 1+ix 2+ix

���

ix1−ix 1+ix 2+ix

図 2: １次風上の例　 (a)初期条件（実線）を u∆t動かす（点線）。(b)正し
い解（点線）と数値計算上の解（実線）。

　 CIP法は、格子 2点間 [i, i + 1]で 3次補間関数 F (x)を作る。この手法
の大きな特徴として、従来の差分法は値のみを用いて格子点間を多項式で補

間するが、CIP法は格子点上の微分値も用いる。

F (X) = aX3 + bX2 + cX + d　 X = x − xi (4)

補間関数の係数は条件「関数の値と微分値が格子点上で連続」という事を要

2



請すると (速度 u < 0とする）

F (0) = fn
i , F (∆x) = fn

i+1, ∂xF (0) = ∂xfn
i , ∂xF (∆x) = ∂xfn

i+1 (5)

となる。式 (5)から、3次関数の係数 a, b, c, dは次の様に求まる。

a =
∂xfn

i + ∂xfn
i+1

∆x2
+

2(fn
i − fn

i+1)
∆x3

(6)

b =
3(fn

i+1 − fn
i )

∆x2
− 2(∂xfn

i + ∂xfn
i+1)

∆x
(7)

c = ∂xfn
i (8)

d = fn
i (9)

ここで nは nステップ目における値もしくは微分値という事を表している。

速度が正の場合は i + 1 → i − 1,　∆x → −∆xと変更するだけでよい。

CIP法では値と共に微分値も時間発展させなくてはならないが、速度 uが

一定値の場合は式 (1)を空間微分すると

∂(∂xf)
∂t

+ u
∂(∂xf)

∂x
= 0 (10)

となり、微分値は値と全く同じ方程式を満たす事が分かる。よって、∆t秒後

(n + 1ステップ目)における値と微分値は次の様に求める事ができる。

fn+1
i = F (xi − u∆t) = aξ3 + bξ2 + ∂xfnξ + fn

i (11)

∂xfn+1
i =

dF (xi − u∆t)
dx

= 3aξ2 + 2bξ + ∂xfn (12)

ここで ξ = −u∆tである。初期条件を与えれば式 (11),(12)から時間発展を
求める事ができる。

矩形波が速度一定で移流する計算例を載せる。比較の為、1次風上差分法
と Lax-Wendroff法の計算結果も載せた (図 3)。風上差分法は数値拡散が非常
に大きい為、時間発展すると大きく崩れてしまう。また、Lax-Wendroff法は
数値振動が非常に大きい。　それに対し、CIP法は矩形が殆ど崩れる事がな
く、解析解に近い形状を保っている事が分かる。

3
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図 3: 矩形波の移流.u = 1,∆x = 1,∆t = 0.2,600ステップ計算した結果. (a)
初期条件、(b)1次風上差分、(c)Lax-Wendroff、(d)CIP.実線が解析解、白丸
が数値解.
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2 非線形方程式への応用

次の様な方程式を考える。

∂f

∂t
+

∂(uf)
∂x

= g (13)

これは速度が空間 ·時間依存し、右辺 gも 0ではない (f, x, tの関数)。この様
な場合、CIP法では「移流相」「非移流相」と分ける事を行なう。式 (13)を
変形すると

∂f

∂t
+ u

∂f

∂x
= g − f

∂u

∂x
≡ G (14)

となり、また、式 (14)を空間微分すると

∂(∂xf)
∂t

+ u
∂(∂xf)

∂x
= ∂xG − ∂f

∂x

∂u

∂x
(15)

式 (14),(15)の左辺は先述の移流部分であるが、ここに右辺の項の効果を加
える。

◎ 移流相
∂f

∂t
+ u

∂f

∂x
= 0 (16)

∂(∂xf)
∂t

+ u
∂(∂xf)

∂x
= 0 (17)

　

◎ 非移流相
∂f

∂t
= G (18)

∂(∂xf)
∂t

= ∂xG − ∂f

∂x

∂u

∂x
(19)

計算手順はまず移流相をCIP法で解いて (fn, ∂xfn) → (f∗, ∂xf∗)と中間の
値を求める。（式 (11),(12)で (fn+1, ∂xfn+1)ではなく、(f∗, ∂xf∗)とする。）
次にその中間値を用いて、非移流相で単純な時間前進差分・空間中心差分

により (f∗, ∂xf∗) → (fn+1, ∂xfn+1)を求め、次ステップの値とする。具体的
な計算については次節で述べる。

5



2.1 非移流相の計算法

移流計算については先述したので、ここでは非移流計算について述べる。

式 (18)は差分化すると

fn+1
i = f∗

i + Gi∆t (20)

となる。（今後、上添字 ∗は移流相計算後の値を意味するものとする。）次に
式 (19)は差分化すると下式になる。

∂xfn+1
i = ∂xf∗

i +
Gi+1 − Gi−1

2∆x
∆t − ∂xf∗

i

ui+1 − ui−1

2∆x
∆t (21)

ここでGiの計算であるが、直接Gの式を代入しても計算は出来るが、計算量を

軽減する工夫として式 (20)を用いる事が出来る。つまりGi = (fn+1
i −f∗

i )/∆t

なので式 (21)は

∂xfn+1
i = ∂xf∗

i +
(fn+1

i+1 − f∗
i+1) − (fn+1

i−1 − f∗
i−1)

2∆x∆t
∆t − ∂xf∗

i

ui+1 − ui−1

2∆x
∆t

(22)

と既に求まっている量で計算する事が出来る。

2.2 計算手順のまとめ

式 (14)の解き方を簡単に手順をまとめておくと

1. CIP 法（式 (11),(12)) を用いて、移流相（式 (16),(17)) の計算を行い
(fn, ∂xfn) → (f∗, ∂xf∗)とする。　

2. 式 (20),(22)を用いて非移流相の計算を行ない、(f∗, ∂xf∗) → (fn+1, ∂xfn+1)
とし、時間発展させる。

3. 以下、繰り返し

この用にすれば、後述の流体方程式やその他の様々な双曲型方程式（Vlasov-
Boltzmann方程式、等）に対して CIP法が適用出来る事が分かる。
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3 流体力学への応用

3.1 基礎方程式

1次元直交座標系での非粘性圧縮性流体の基礎方程式は次式で表される。

∂ρ

∂t
+ u

∂ρ

∂x
= −ρ

∂u

∂x
(23)

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
(24)

∂p

∂t
+ u

∂p

∂x
= −γp

∂u

∂x
(25)

となる。ここで ρは密度、uは速度、pは圧力、eは単位質量当たりの内部エ

ネルギーである。理想気体では

e =
1

γ − 1
p

ρ
(26)

である。γは比熱比である。式 (23)～(25)はそれぞれ式 (14)と全く同形であ
る。よってそれぞれを移流相・非移流相に分けて CIP法を用いて計算する事
が出来る。

ここで物理量の定義点についてであるが、大きく 2つに分ける事が出来る。
1つは (ρ, u, p)全て同じ点に定義するレギュラー格子、もう 1つはスカラー
量 (ρ, p)の定義点の中間点にベクトル量 u (※多次元を考慮してこう呼ぶ事に
する。）を定義するスタガード格子であるが、本手法では後者を用いる。

�� ������������

,ρ p u

��������������������

図 4: スタガード格子での、1次元での物理量配置。

3.2 人工粘性

圧縮性流体の計算では、超音速になると衝撃波が発生する。衝撃波は数学的

には不連続面であるが、実際は流体に粘性がある為、衝撃波は分子の平均自

由行程程度の厚さを持っている。数値解析では、衝撃波の厚さを格子幅∆x程
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度で捉える事が出来れば良いので、衝撃波面のみに作用する人工的な粘性を

圧力項に加える事で衝撃波を捉える事が可能になる。ここではVon-Neumann
型の人工粘性 [4][5]を用いる。

qi =


 α[−ρiCs(

∂u

∂x
)λ +

γ + 1
2

(
∂u

∂x
)2λ2] if

∂u

∂x
< 0

0 otherwise

である。qiは圧力と同じ定義点なので、(∂u/∂x) = (ui+1/2 − ui−1/2)/∆xで

あり、圧縮領域のみに人工粘性が加わる事になる。 λは衝撃波の厚さである

が、ここでは格子幅∆xとすればよい。また、Cs =
√

γpn
i /ρn

i は音速、αは

人工粘性係数で 0.6から 1.0の間程度の値である。
よって、人工粘性を入れた差分式は

ρn+1
i − ρ∗i

∆t
= −ρ∗

i

u∗
i+1/2 − u∗

i−1/2

∆x
(27)

un+1
i+1/2 − u∗

i+1/2

∆t
= − 1

ρ∗i+1/2

(p∗i+1 + q∗i+1) − (p∗i + q∗i )
∆x

(28)

pn+1
i − p∗i

∆t
= −{γp∗i + (γ − 1)q∗i }

u∗
i+1/2 − u∗

i−1/2

∆x
(29)

となる。ここで ρ∗i+1/2 = (ρ∗i+1 + ρ∗i )/2である。式 (29)中で (γ − 1)q∗i となっ
ているのは、元々は保存形の基礎方程式の圧力に人工粘性を加える事から導

かれる為である。

3.3 応用：CCUP法

前節で移流相に CIP、非移流相に式 (27)～(29)を用いて流体方程式が解け
る事が分かった。ところで、この非移流相を次の様に書き換えてみる。

ρn+1 − ρ∗

∆t
= −ρ∗∇ · �u∗∗ (30)

�u∗∗ − �u∗

∆t
= −∇p∗∗

ρ∗
(31)

p∗∗i − p∗i
∆t

= −γp∗∇ · �u∗∗ (32)

ここで格子点の下添字は省略し、一般的なベクトルの形で書く事にする。式

(27)～(29)では右辺の時刻は全て ∗であったが、本手法では右辺にも ∗∗があ
る陰解法になっている。式 (31)の両辺の divを取り、γp = ρC2

s (Cs は音速)
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である事に注意して式 (32)を代入すると、次の圧力に関する poisson方程式
が導かれる。

∇ ·
(∇p∗∗

ρ∗

)
=

p∗∗ − p∗

ρ∗C2
s∆t2

+
∇ · �u∗

∆t
　 (33)

本手法を CIP-CUP法 (CIP-Combined Unified Procedure)と呼ぶ [6]。式
(33)を反復法（SOR, Bi-CGSTAB, etc) で p∗∗を求めてから式 (31)で �u∗∗を
求め、式 (30)で ρn+1を求める。非圧縮性流体は音速∞の近似であるが、式

(33)で Cs → ∞とするとMAC法の様な式になる。この様に音速を変える事
によって圧縮性・非圧縮性流体を統一的に解く事が出来る。実際には人工粘

性・実粘性・熱伝導等の効果を入れる事になるので、

�un+1 − �u∗∗

∆t
= �Qu (34)

pn+1 − p∗∗

∆t
= Qp (35)

( �Qu, Qpは先述の効果）の様に後でそれらの効果で時間発展させ、pn+1、�un+1

を求める。

3.4 計算例

　計算例として最も典型的な衝撃波管問題を CIP法と CCUP法で解いた
結果を示す。初期条件は p = 1, ρ = 1 (x < 1), p = 0.1, ρ = 0.125 (x > 1)。比
熱比 γ = 1.4、格子幅∆x = 0.1 時間刻み∆t = 0.01とし、400ステップまで
計算を行なった。また、人工粘性係数 α = 0.7である。図 5は密度の結果で
あるが、共に解析解とほぼ一致した解が得られている事が分かる。また、衝

撃波面も sharpに捉えられている事が分かる。
接触不連続面で若干の overshoot,undershootが見られるが、これらも単調

性が保証されている有理関数 CIP法 [7]を用いる事で改善する事が出来る。
圧縮性流体の計算では CIP法の方が Rarefaction Wave等を見ても若干良い
様であるが、CCUP法は計算が安定であるという利点がある。
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図 5: CIP法（左）と CCUP法（右）の計算結果（密度）

3.5 （Appendix) 円柱・球座標系の半径方向 1次元CIP

ここまで述べてきたのはデカルト 1次元座標系だが、容易に他の座標系に
も拡張出来る。例えば流体方程式は次の様に一般的に書き換えられる。

∂ρ

∂t
+

1
rδ

∂(ρurδ)
∂r

= 0 (36)

∂u

∂t
+ u

∂u

∂r
= −1

ρ

∂p

∂r
(37)

∂e

∂t
+ u

∂e

∂r
= − p

ρrδ

∂(urδ)
∂r

(38)

ここで、δ = 0, 1, 2はそれぞれデカルト、円柱、球座標に対応する。よって、
右辺の非移流項は

G =
(
− ρ

rδ

∂(urδ)
∂r

,−1
ρ

∂p

∂r
,− p

ρrδ

∂(urδ)
∂r

)
(39)

と変えるだけで良い。

4 保存保証型CIP法

4.1 CIP-CSL2(Conservative Semi-Lagrangian)法

第 1,2章で述べた CIP法は「非保存形」の方程式に適用するので、値の保
存が数学的には保証されていない。（※しかし、通常の非保存形の差分法と比

較しても保存の崩れは非常に小さい。）そこで近年、保存が保証される CIP
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法が提案されている。これまで CIP-CSL4[8]法と CIP-CSL2 [9]法が提案さ
れているが、本節では CIP-CSL2法について述べる。
例えば次の様な方程式を考える。

∂D

∂t
+ u

∂D

∂x
= 0 (40)

これは普通の移流方程式だが、式 (40)の空間微分を取り、D
′ ≡ ∂D/∂xとす

ると次の保存方程式が得られる。

∂D
′

∂t
+

∂(uD
′
)

∂x
= 0 (41)

この事から、式 (41)でD
′ ≡ f(=値),式 (40)でD =

∫
fdxとすれば CIP

法における値と微分値の関係をそのまま積分値と値に置き換える事が出来、

第 1,2章で述べた関係式をそのまま適用する事が出来る。
通常の CIP法は値 f と微分値 ∂f/∂xを用いて 3次補間関数を構築するが、

CIP-CSL2法は値 f と積分値 ρ =
∫

fdxを用いて 2次関数を構築する。その
際、積分値 ρは格子の中点に定義する。値が 2次関数なので、積分値の関数
は 3次関数になっている。そこで

Di(x) =
∫ x

xi

f(x
′
)dx

′
(42)

を導入し、

Di(x) = A1iX
3 + A2iX

2 + fn
i X (43)

と積分値を 3次関数で補間すれば、その微分に対応する値の関数は

Fi(x) =
∂D(x)

∂x
= 3A1iX

2 + 2A2iX + fn
i (44)

と書く事が出来る。ここでX ≡ x − xi である。

補間関数Di(x)の連続条件は、Di(x)が値を与える事に注意すると CIP法
と同様に

Di(xi) = 0, Di(xiup) = −sgn(ui)ρn
icell,

∂xDi(xi) = fn
i , ∂xDi(xiup) = fn

iup (45)
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ここで、ρn
icell は上流側の格子内の全質量（icell = i − sgn(ui)/2)、iup =

i − sgn(ui)である。よって、係数 A1,A2は

A1 =
fn

i + fn
iup

∆x2
i

+
2sgn(ui)ρn

icell

∆x3
i

(46)

A2 = −3sgn(ui)ρn
icell

∆x2
i

− 2(fn
i + fn

iup)
∆xi

(47)

∆xi ≡ xiup − xi であり、この様に一意に決定する事が出来る。

4.2 時間発展のまとめ

CIP法が値 f と微分値 ∂xf の時間発展が必要なのに対応して、CIP-CSL2
法は値 f と積分値 ρの時間発展が必要である。よって、保存方程式

∂f

∂t
+

∂(uf)
∂x

= 0 (48)

を CIP-CSL2法で解く時は

1. 値 f は、式 (48)を移流相と非移流相に分け、式 (16),(18)（※ g = 0）の
様に時間発展させる。つまり

(a)移流相

f∗
i = F (xi − u∆t) = 3A1ξ2 + 2A2ξ + fn

i (49)

(b)非移流相　

fn+1
i = f∗

i + Gi∆t Gi = −f∗
i

∂u

∂x
　 (50)

である。

　

2. 積分値 ρは、格子内の質量の流入出を考慮すればよいので（図 6参照）

ρn+1
i−1/2 = ρn

i−1/2 + (∆ρn
i−1 − ∆ρn

i ) (51)

とすればよく、また∆ρn
i は格子点上での質量流束を表し、

∆ρn
i =

∫ xi

xi+ξ

F (x
′
)dx

′
= −Di(xi + ξ)

= −(A1iξ
3 + A2iξ

2 + fn
i ξ) (52)

と書く事が出来る。

3. 　以下、繰り返し
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ここで ξ = −ui∆tである。式 (51),(52)は、各格子間での質量（積分値）の
収支を表しているので、計算領域全体で全質量が保存される事がわかる。

本手法は、例えば流体方程式の連続の式は CIP-CSL2法で解いて質量保存
させ、運動方程式・エネルギー式は通常の CIP 法で解くといった応用が出
来る。

ix1−ix
x

iρ∆
1−∆ iρ

2/1−iρ

)(xFi

)(1 xFi−

tui ∆−1 tui∆

図 6: ∆t内の格子内の質量流入・流出。

4.3 計算例

式 (48)の計算例として、次の計算を行なった。速度は

u(x) = 1.0/(1.0 + 0.5sin(2πx)) (53)

とし、値の初期条件は

f(x, t = 0) =

{
1 if 0.25 ≤ x ≤ 0.45
0 otherwise

とした。格子幅∆x = 2.0/N（Nは格子数）、時間幅∆t = ∆x× 0.2とし、格
子数を変えてそれぞれ t = 0.8まで計算を行なった。また、積分値 ρの初期

条件は格子間が直線補間されているとして

ρ0
i−1/2 =

f0
i−1 + f0

i

2
(xi − xi−1) (54)

とした。

図 7(a)(b)は計算結果と解析解との比較、図 7(c)(d)はMass Error（最も粗
い N = 200)を表している。計算結果については、同じ格子数で従来の CIP
法とほぼ同等の結果を得る事が出来ている。保存については、値 f については

完全には保存はしていない。これは初期条件で積分値を直線補間したと仮定
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図 7: 計算結果。(a)格子数N = 200, 600, 2000の結果と解析解 (CIP-CSL2)、
(b)同 CIP、(c)値 fのMass Error(CIP、CIP-CSL2)、(d)積分値 ρのMass
Error(CIP-CSL2)。
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した為である。CIP法も十分小さい範囲で fも保存されているが、CIP-CSL2
法は更にその保存が良くなっている。また、CIP-CSL2法で用いられている
積分値 ρについては計算機の誤差 (～10−14)以内で質量が保存されている。
格子内質量の正しい定義が fi∆xではなく ρi−1/2 であることを考慮すれば、

本手法は完全な保存保証スキームである事が分かる。

4.4 多次元化

4.4.1 2次元

多次元化する方法として、Directional Splitting[10]の方法を簡単に紹介す
る。例えば 2次元の場合、方程式は　

∂f

∂t
+

∂(uf)
∂x

+
∂(vf)

∂y
= 0 (55)

となるが、1次元の手法を活用する為に図 8の様な物理量を定義する。

1, +jxiσ

jxi,σ

jyi,σ 1,1 ++ jiρ jyi ,1+σ

1,1 ++ jif

jif ,1+

1, +jif

jif ,

図 8: CIP-CSL2の物理量 (2次元）。線密度 σx,σy と密度 ρ。

ここで、

σn
xij =

∫ xi+1

xi

f(x, yj , t)dx (56)

σn
yij =

∫ yj+1

yj

f(xi, y, t)dy (57)

ρn
ij =

∫ xi+1

xi

∫ yj+1

yj

f(x, y, t)dydx (58)
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である。計算手順は

STEP1 :
∂f

∂t
+

∂(uf)
∂x

= 0 (59)

STEP2 :
∂f

∂t
+

∂(vf)
∂y

= 0 (60)

を順次行なう。前節、式 (48)～(52)の手順をCIPCSL1D(u, fn, fn+1, ρn, ρn+1, x)
と置くと、

STEP1 : CIPCSL1D(u, fn, fstep1, σn
x , σstep1

x , x)

ū =
uij + uij+1

2
CIPCSL1D(ū, σn

y , σstep1
y , ρn, ρstep1, x) (61)

STEP2 : CIPCSL1D(v, fstep1, fn+1, σstep1
y , σn+1

y , y)

v̄ =
vij + vi+1j

2
CIPCSL1D(v̄, σstep1

x , σn+1
x , ρstep1, ρn+1, y) (62)

とすればよい。

4.4.2 3次元

3次元では、線密度 σx,σy,σz と面密度 Sxy, Syz, Szx（と密度 ρ）を用意す

る（図 9参照）。ここで

Sn
xyijk =

∫ xi+1

xi

∫ yj+1

yj

f(x, y, zk, t)dydx (63)

Sn
yzijk =

∫ zk+1

zk

∫ yj+1

yj

f(xi, y, z, t)dydz (64)

Sn
zxijk =

∫ xi+1

xi

∫ zk+1

zk

f(x, yj , z, t)dxdz (65)

ρn
ijk =

∫ xi+1

xi

∫ yj+1

yj

∫ zk+1

zk

f(x, y, z, t)dxdydz (66)

である。同様に計算手順は

STEP1 :
∂f

∂t
+

∂(uf)
∂x

= 0 (67)

STEP2 :
∂f

∂t
+

∂(vf)
∂y

= 0 (68)

STEP3 :
∂f

∂t
+

∂(wf)
∂z

= 0 (69)

であり、2次元と同様に
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zijkσ
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yijkσ
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図 9: CIP-CSL2の物理量 (3次元）。線密度 σx,σy,σz と面密度 Sxy,Syz,Szx

STEP1 : CIPCSL1D(u, fn, fstep1, σn
x , σstep1

x , x)

ū =
uijk + uij+1k

2
CIPCSL1D(ū, σn

y , σstep1
y , Sn

xy, S
step1
xy , x)

û =
uijk + uijk+1

2
CIPCSL1D(û, σn

z , σstep1
z , Sn

zx, Sstep1
zx , x)

ũ =
uijk + uijk+1 + uij+1k + uij+1k+1

4
CIPCSL1D(ũ, Sn

yz, S
step1
yz , ρn, ρstep1, x) (70)

STEP2 : CIPCSL1D(v, fstep1, fstep2, σstep1
y , σstep2

y , y)

v̄ =
vijk + vi+1jk

2
CIPCSL1D(v̄, σstep1

x , σstep2
x , Sstep1

xy , Sstep2
xy , y)

v̂ =
vijk + vijk+1

2
CIPCSL1D(v̂, σstep1

z , σstep2
z , Sstep1

yz , Sstep2
yz , y)

ṽ =
vijk + vijk+1 + vi+1jk + vi+1jk+1

4
CIPCSL1D(ṽ, Sstep1

zx , Sstep2
zx , ρstep1, ρstep2, y) (71)

STEP3 : CIPCSL1D(w, fstep2, fn+1, σstep2
z , σn+1

z , z)

w̄ =
wijk + wi+1jk

2
CIPCSL1D(w̄, σstep2

x , σn+1
x , Sstep2

zx , Sn+1
zx , z)

ŵ =
wijk + wij+1k

2
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CIPCSL1D(ŵ, σstep2
y , σn+1

y , Sstep2
yz , Sn+1

yz , z)

w̃ =
wijk + wij+1k + wi+1jk + wi+1j+1k

4
CIPCSL1D(w̃, Sstep2

xy , Sn+1
xy , ρstep2, ρn+1, z) (72)

である。
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CIP法によるMHD解法

「天体とスペースプラズマのシミュレーションサマースクール」
2002年 9月 11日-9月 15日

場所：名古屋大学情報メディア教育センター

1 CIP法によるMHD解法：CIP-MOCCT法

現在様々なMHD解法が存在するが、CIP法でMHDを解く場合に磁場項
と誘導方程式をどの様に解くかが課題となる。その解決法として、誘導方程

式の解法であるMOCCT法を組み合わせたCIP-MOCCT法がKudoh（国立
天文台）によって提案された [1][2][3]。これを紹介する。
磁気流体の基礎方程式は次の様に書かれる。

∂ρ

∂t
+ (u · ∇)ρ = −ρ∇ · u (1)

∂u
∂t

+ (u · ∇)u = −1
ρ
∇(p +

B2

8π
) +

1
4πρ

(B · ∇)B + Qf (2)

∂p

∂t
+ (u · ∇)p = −γp∇ · u + Qp (3)

∂B
∂t

−∇× (u× B) = 0 (4)

∇ · B = 0 (5)

ここでQf は実粘性・人工粘性・重力等の外力項、Qpは熱伝導・人工粘性等

の項である。

式 (1)～(3)中の左辺は CIP法で解き、右辺は非移流相として解けば良いの
だが（圧力項を Poisson方程式で解けば CCUP法になる）、式 (4),(5)の解法
にMOCCT法を用いる。

2 MOCCT法の概略

MOCCT法は∇ ·B = 0を満たす様に式 (4)を解く CT法と、アルフベン
波特性曲線を安定に解く為のMOC法を組み合わせた手法である。
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2.1 MOC : Alfven波特性曲線法

磁気流体方程式中のMaxwell方程式は

∂B
∂t

= ∇× E (6)

E = −u × B + ηJ (7)

であるが、ここでは η = 0とする。まずは簡単の為、1次元（X方向）の場
合を採りあげる。格子点 xi上に ρ, p, By, vy を配置し、格子点間に vxと起電

力（電場）Eの z成分 εz を配置する。（図 1）

�� ������������

ρ
yB

p
yv ε

xv

��������������������

図 1: 1次元の物理量配置。速度 X成分と電場は格子の中心に定義。

式 (6),(7)より By の方程式は次の様に差分化する事が出来る。

Bn+1
yi − Bn

yi

∆t
+

(εz)
∗
i+1/2 − (εz)

∗
i−1/2

∆x
= 0 (8)

ε∗zi+1/2 = ui+1/2B
∗
y − v∗Bx

ここで ∗は中間の時刻 (n + 1/2)を表す。また、∇ · u = 0 より、Bx =const
である。この ε∗z を求める時にアルフベン波の特性曲線法 (Method of Char-
acteristics : MOC)を用いる [4]。アルフベン波は非圧縮性MHDに見られる
波動であるので、特性曲線は次の 2つの式、運動方程式と誘導方程式から導
かれる。

∂vy

∂t
=

Bx

4πρ

∂By

∂x
− ∂ (vxvy)

∂x
(9)

∂By

∂t
= Bx

∂vy

∂x
− ∂ (vxBy)

∂x
(10)
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（※ ρ, vx, Bx =constant)　式 (9),(10)を変形すると、別の 2式が得られる。

Dvy

Dt
∓ 1√

4πρ

DBy

Dt
= 0　 (11)

D

Dt
=

∂

∂t
+

(
vx ± Bx√

4πρ

)
∂

∂x
(12)

式 (12)は特性速度（移流速度）がC± = vx ± Bx√
4πρ

を意味し、特性線：式

(11)に沿って vy ∓ By√
4πρ

が保存される不変量になっている事を表している。

よって、式 (11)を特性線に沿って積分すると、特性曲線の始点（時刻 n）

と ∗の間には次の様な関係式が導かれる事になる。（図 2)

v∗y − v+
y − 1√

4πρ+
(B∗

y − B+
y ) = 0 (13)

v∗y − v−y +
1√

4πρ−
(B∗

y − B−
y ) = 0 (14)

ここで、(By, vy)± は各特性線 C± の始点の値である。式 (13),(14)から、v∗y
と B∗

y は

v∗y =
v+

y

√
4πρ+ + v−y

√
4πρ− − B+

y + B−
y√

4πρ+ +
√

4πρ−
(15)

B∗
y =

−v+
y + v−y + B+

y /
√

4πρ+ + B−
y /

√
4πρ−

1/
√

4πρ+ + 1/
√

4πρ−
(16)

の様に求める事が出来る。簡単の為、ρ+ = ρn
i−1, ρ− = ρn

i+1 とする。

始点の値 f(= By, vy)± は、式 (12)を見ても分かるように移流の形をして
いるので、格子間を補間して求める事が出来る。補間方法には様々あるが、

例えば van Leerの方法（i − 1/2と i + 1/2を直線補間する方法）では

f(= By, vy)± =




fn
i + 1

2 (∆x − C±
i+1/2∆t)

∆f

∆x (i)
if C±

i+1/2 > 0

fn
i+1 − 1

2 (∆x + C±
i+1/2∆t)

∆f

∆x (i+1)
otherwise

ここで、

∆f

∆x (i)
=




2∆fi−1/2∆fi+1/2

∆fi−1/2 + ∆fi+1/2
if ∆fi−1/2∆fi+1/2 > 0

0 otherwise
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n+1/2(*)

n
ii-1/2 i+1/2

C+ C-

n+1

+
yB +

yv −
yB −

yv

xyix

i

BvBv **
2/1

2/1
*

−
=

+

+ε

1+n
yB

t

x

図 2: アルフベン波特性曲線と磁場の時間発展。実線矢印：特性曲線により
起電力を求める。点線矢印：式 (8)を用いて By の時間発展を行なう。

∆fi+1/2 = (fi+1 − fi)/∆xである。この補間方法にも CIP法を適用する事も
出来る。

2.2 多次元、CT法

前節は 1次元の場合だが、そのまま多次元に拡張する事も出来る。例えば
2次元では磁場の各成分は

∂Bx

∂t
= −∂ε

∂y
(17)

∂By

∂t
=

∂ε

∂x
(18)

ε = −(vxBy − vyBx) (19)

であるが、各物理量の配置は図 3の様にする。スタガード格子なので、スカ
ラー量は格子中心、ベクトル量は格子境界、また起電力 εは格子の角に配置す

る。この様にすれば 1次元の手法を用いて X方向でBy, vy、Y方向で Bx, vx

を求め、式 (19)の εが求まり、式 (17),(18)を差分化した式

4



εyy Bv ,

xx Bv ,
p,ρ j

1−j

2/1−j

2/1+j

2/1+ii2/1−i1−i

図 3: 2次元MHDコードでの物理量の配置、CT法
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Bn+1
x(i+1/2,j) − Bn

x(i+1/2,j)

∆t
= −

ε
n+1/2
(i+1/2,j+1/2) − ε

n+1/2
(i+1/2,j−1/2)

∆y
(20)

Bn+1
y(i,j+1/2) − Bn

y(i,j+1/2)

∆t
=

ε
n+1/2
(i+1/2,j+1/2) − ε

n+1/2
(i−1/2,j+1/2)

∆x
(21)

で磁場が時間発展される。これは 3次元でも同様に拡張が出来る。
図 3の様に物理量を配置する方法を CT法と呼ぶが、この様に磁場と電場

を異なる場所で定義すると、式 (20),(21)を用いて、初期条件で∇ ·B = 0が
満たされていれば常に∇ · B = 0になる事が示される [4]。
この事から分かるように、CT法は単に∇ ·B = 0を保証する手法であり、

電場 εの求め方の規定はしていない。これにMOC法を組み合わせる事で安
定なスキームになっている。

2.3 運動方程式中の磁気ストレス項

運動方程式の右辺にも磁気ストレス項が存在するが、この項にもMOC法
を用いて値を評価する事になる。例えば、2次元MHDの運動方程式のｙ成
分は次式である。

∂vy

∂t
+ vx

∂vy

∂x
+

∂vy

∂y
= −1

ρ

∂

∂y

(
p +

B2
x

8π

)
+

Bx

4πρ

∂By

∂x
(22)

この内、磁気圧項（右辺第 1項）は圧力と同様の差分を作ればよいが、第 2
項はストレス項でありこの項にMOC法を適用する。非移流相において第 2
項の差分のみ表記すると

(vy)∗i,j+1/2 − (vy)n
i,j+1/2

∆t
= . . .

+
(

1
4πρ̄

)
< Bx >n

i,j+1/2

(By)∗i+1/2,j+1/2 − (By)∗i−1/2,j+1/2

∆x
(23)

ここで、ρ̄, < Bx >n
i,j+1/2 はそれぞれ vy の定義点 (i, j + 1/2)上での平均値

である。例えば

< Bx >n
i,j+1/2=

1
4
[(Bx)i+1/2,j + (Bx)i+1/2,j+1 + (Bx)i−1/2,j(Bx)i−1/2,j+1] (24)
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等である。式 (23)における、B∗
y の値の見積りにMOC法を用いる。しかし、

この計算は非移流相の計算であり、移流部分は CIP法で別に計算する事にな
るので特性速度は

C± = ± Bx√
4πρ

(25)

を用いて計算する。（※式 (11),(12)は移流項も含めて特性線を出していた))
これは運動方程式の x成分も同様に計算を行なう。

2.4 計算手順

CIP法とMOCCT法をまとめた手順は次の様になる。

1. 初期条件 (ρn,un, pn,Bn)を設定。

2. 非移流項の計算　 (ρn,un, pn) → (ρ∗,u∗, p∗)

(a) この時、運動方程式のストレス項の計算はMOC法で求める。（式
(23)～(25))

3. 移流相と磁場の時間発展

(a) CIP法でρ,u, pの移流相の計算を行なう。(ρ∗,u∗, p∗) → (ρn+1,un+1, pn+1)

(b) MOC法で電場 εを計算し、CT法で磁場Bn+1を計算。（式 (20),(21))

4. 以下、繰り返し

典型的な計算例として、1.5次元衝撃波管問題の計算例を CIP-MOCCT法
で解いた結果を示す。1.5次元なので磁場・速度の y成分はあるが、∂/∂y = 0
である（勿論、z成分は値・微分共に 0)。初期条件は p = 1, ρ = 1, By = 1.0
(x < 400), p = 0.1, ρ = 0.125, By = −1.0 (x > 400)。比熱比 γ = 1.4、格子
幅∆x = 2.0とし、t = 80.0の結果を示す。人工粘性係数は 0.7である。

7



�� �����

�� �����

�� �� ���

���

���

���

���

�

� ��� ��� ��� ��� 	�� ��� 
�� ���

��������������

��
����

�
�
�
�
��
�

�

�

���

���

���

���

�

� ��� ��� ��� ��� 	�� ��� 
�� ���

����������������

��
����


�
�
�
�
�
�
�
�

�

���

���

�

���

���

���

���

�

� ��� ��� ��� ��� 	�� ��� 
�� ���

��
��������

�
�
�
�
�
��
��
��

�

����

����

�

���

���

���

���

� ��� ��� ��� ��� 	�� ��� 
�� ���

��������		

����

��

���
������

�
�
�
�
	


�
�

�

�

����

����

����

��

����

����

����

����

�

� ��� ��� ��� ��� 	�� ��� 
�� ���

�������	
���	
��

��

����������

�
��
�
��
�
��
�

�

��

����

�

���

�

� ��� ��� ��� ��� ��� 	�� 
�� ���

� �� ���� � �� � ���	 
 �	 
 �

���
� �����

�
�
�
�
�

�
�	


�

�

図 4: 1次元MHD衝撃波管問題。

8



参考文献

[1] T.Kudoh and K.Shibata, Numerical MHD Simulation of Astrophysical
Problems by Using CIP-MOCCT Method; CFD Journal,8, 56 (1999)

[2] T.Kudoh and K.Shibata, Alfven Wave Model of Sppicules and Coronal
Heating, Astrophysical Journal,514,493 (1999)

[3] T.Kudoh and K.Shibata, Magnetically Driven Jets from Accretion
Disks. II. Nonsteady Solutions and Comparison with Steady Solutions,
Astrophysical Journal,476,612 (1997)

[4] J.F.Hawley and J.M.Stone, MOCCT: A Numerical technique for astro-
physical MHD, Comput.Phys.Commun,89,127 (1995)

9



������ ���	
� ��� 
���
� �� �����	��	���

����� ��� 
���� ��� 
�
	������� ��� 
����

�������

�� �������

���������	���
 ��
��
�� ����� ��������
��� ����� ��������� �� ��

��������� ! 	�
���"����
����# $%�&' �����
�
�#�	��� �����	���"
�"������ $()&'

���#�	��� 
����� �
 "�*�#� �" �� ��
	
��	�
�" �
�" 
�
	��
 	� 
�#*� 	�� ��� #�+�

�
	��  
��#��
 �� 
 ��� 
������ ��" 
 ��� ,��	��
 �� ,���� ����
���# "�Æ��#	��

�
�
� -
�� �����������	� "�� 	� 
	
��� �����
���"  �	��	��# .�#"
� ���#�
��� �- ��#	��

 ����
 ���
� ��" -�
��	���
 �- 
����
 ��" "�
���	����	��
� ��� �"��# ()& �/��	���

�
� �+	��"�" 	� 	�� ����� ����	 ()& �/��	���
 -�
 ��#	����� ����	 ���
 ��" ��"�
�.�" 
� �
 	� �*��" � "�
��	 ���#�
��� �- �����
���"  �	��	��# .�#" �� "� ��"��	 *�
��
��#�
 	�
���� 	�� �
� �- ��, *�
���#�
� ��� ����
���# 
����� �"� 	
 	�� .��	� *�#���
��	��" $01(' ,�	� �� � ,��"��� ����
���# 2�+ ��
�" �� 	�� #����
�3�" �������

�#*�
� 4 ,��"���
 �� ��
	
��	�
�" �
�" 
�
	��
 �
� 
��#�3�" -
�� 	�� -��	 	��	 	��
()& �/��	���
 �
� 
����	
�� ,�	� 
�
 ��	 	� 	�� 
�	�	��� �- 	�� 
 ���� &�
 �	� 	��
��"�.��	���
 �- 	�� �/��	��� 
�
	��� 	�� �����*��	�

 �� 	�� ��"��
��	��
�
 ��	
�+
����

�
� -�
 	�� �*�#��	��� �- 	�� � ,��"��� ����
���# 2�+ ��� 
	�## �� ,
�		�� ���#�	�
���##�� �� ��	 � �����
 �
"�
 �- ����
���� 	�� � ,��"��� 2�+ �
 �+	��"�" 	� 	�� 	��
"�
�
"�
 	�	�# *�
��	��� "�����
���� $�1&' ����
���# 2�+ �� 	�� ��#��#�	��� �- 01(�
	�
���� 	�� ����	���� � 
	
��� 
����� -�
 ���
�
*�	��� #�,
 $(45��' �  
����
��" 1�� ���
6
 "�7�
��	���#� #���	�
� ��
�� ����
���# �+�� #�
 �
� ��*�� �� �
"�
 	�

��, 	�� �Æ������ �- 	�� ���*� 
������

� �������	�
��

�����	
�� 	
� �����	�
����������� ����� ����
�	���� ��� ����
� ���
��� 	�
���� ����
��� �� ����� ������� ��	
 � ����	 ������� �� �! �" �# �$ �% �& �' �( 
��) ��� ��! � * ����� ��+�
�����	 �, ����������	��� �� �����	�	����
 �����
��� ������ ��-� ��+�� � ���+��	��� ,�� ,��	
�� ��+�
�����	� �� 	
�� ,���	,�
 �����
.� 	
��� �	������ 	
� ��+�
�����	� �, ����������	��� ��� ��������
 ��
����
��� 
��� 	
� 	�� �
��
� �, � ���	� .� ����� 	� ���
� 	
� ��� ����
�	���� 	� 	
�
����
��� 
�+��� ���� ����
�/ ���0����	����� ,��	
�� �����+����	� �, �����1
���
 ��
���� ��� �
�� ���+�����
�� .� 	
�� ������ �� ��+�
�� � ��������
 ���
��
��� 	
�	 ����
�� �� �/��	 	���	���	 �, ��
	�1���
� ����� �
���� ���
�����
��
	�1��������	 ���� ��� �	���� ���������� ��	��	��
 0�
�� ��	
 �� �/��

��	
���	����� �, �
���� ��� ������	����	����

.� 	
� ����� �������� �� ���	 �
���� �	��� 	
� ����
�/ ���	��� �
��
 ���
���	��

�� �� 	
� ����
��� ��������� ��	���� ��2����	 ������� 
�+��� 3��	� ��2��1
��	 �
����	����	���� *�����
 �
����� �� � 	�����
 �/���
� �, 	
�� ���� �, ����
��
�" �$ � �
� ���� ������� ���	��

��� 	
�� ����
�� �� 	
� ����
��� �2��	� 	
�	



8 �� ������

����� ��	���� 	
� �����	���
��� ��� 	
� ������
���� �
� �
����	����	�� 
���	

��� 	��� ���
�� �, 	
��� 	�� ������� ��� +��	
� ��2����	� ., ��������
 ���
����
�	���� ��� ���
��� 	� 	
��� ����
���� 	
�� �	 ������� ��������� 	� ������
��2����	 ���� ����	 �����	��� 	� ���
 ������� �� ����� 	� ,���
�	�	� 	
� ����
	���1
��� 	���	���	 �, 	
� ��2����	 �������� �
���,���� �	 �� ���+�����
� 	� ����	 ��
���	���	���� ���� ���	��� �
� �������� 0��	� ��2������ ��	
�� �4��� �
��
 ��
����
� ���� 	� ��
+� ��2����	��
 �3��	���� ��������

� �� �� 
����� ���
����
� ��
�� ���	���	���� ���� ���	�� ��� �� 
��� �� �������� 	
� 0��	� +�
��� ��	
��
�45�� ����� �� 	
� 6�/ ������+�	��� 
�� ��" �

���
1����� 6����� �
���� 	
�	 �� ,��3���	
� 	���	�� �� ����� ������� 	����
	� ,��� �
���� ��� ������	����	���� �
� ��� �, �	������ ��������
 ��
���� �,
������1����� �������� ����� 	
� 7�/18�����2 ��	
��� ������	�� �������� ��1
��

�	���� �	 
��
 �������	�� �
���,���� 	
��� �� � ���� 	� ��� ���� ��+�����
��
���� 	
�	 ��� ���3��	�
� ��������	 	
��� �
���� ��� ������	����	���� *� ��	1
�	������ �������
 �� 	� �+�
��	� ��������
 6�/ �� 	
� 45� ,��� �� ���������
��	
�� ����� �� 	
� 
������-�� ������� ��
+�� ��# ��$ ��% � �� ��	 � 
��
�� ��1
��� �, ��������� 	
� ��������� ��
��� ,�� ��������
 6�/ �� �/	����� 	� 	
� 	�	�

+����	��� �������
��� ��5�� ��
���� *���� ���� �5� ��
����� � 	
���1�����
�5� ��
��� ����� �� 	
� ����	���� ���	���� ��
��� ,�� ������+�	��� 
���
��9:;7� �������
 �� ���������� �� 	
�� ����� ��& ��' � 8�	
 	
�� ��������

6�/� �/��

��	 �
���1���	����� �� ����
�� �
��� ��	
 �	��
� ��� 
��

�1������	�
�����	�	����� �
� �����+�
��� ��� �����+��	��� �, 	
� ��� 6�/ <������� ��1
	��/ ��������� ,�� 	
� ��������� ��
��
�	���� ��� ����+�� ,��� 	
� ��

1�����
*
,+��� ,��	 ��� �
�� +�
���	��� ��# � �
� ��
��
�	��� �, �����+��	��� �� ���� ��	

������
 ���� �
�� ��+� �������	���� ������ ����

�
 �� ����������
�� 	� 	
� ��1
����	 �����	�� 0�
�� ������� ��������	���� �, �����+�
��� ����� �� 	
��� �����
��# ��( �

*��	
�� ����
�� �� ����� ������� �� 	
�	 ���� �
���	� ��� �	��� 	���	�� ��
	
� ����
�/1���	�� ����
�	��� 
�+� � �	���� ����
� �����	�� 0�
� ������	��
�� 	
��� ��	����� �������� .� 	
� ���� �, 	
� ���	
� 	
� �����	��� �, 	
� ����
�
�����	�� 0�
� �� ����	 ")))) �� �� 	
� ������
���� ������ ���� 	
� =��	
� �
�
�
�	 �������
�� �����
� �� 	
� �����	���
��� 	� ����	 �) ��� �
���,���� 	
� ���1
��	��� �, 	
� ��	������ �����	�� 0�
� +����� �+�� � ���� ����� �� 	
� �
�
� 	���	1
��� ������� �� 	
� ����
�� �, �����	���
���1������
��� ��1.� ����
����� >� 	
�
�	
�� 
���� 	
� +�����
� ��������	� �, �����	�� 0�
�� �
��
 ��� ��
��
�	�� ,���
	
� ��� �3��	����� �/
���	 � ����
�� �����	��� �+�� 	
� �
�
� ������� *� � ��1
��
	� 	
� ��	�� �, +�����
� 	� ��	������ ��������	� �, 	
� �����	�� 0�
� �������
�/	����
� ���

 �� 	
� ������
���� ������� �
��� ��	��	���� ��+� � ��Æ��
	� �� 	
�
��������
 �	��� �, 	
� ����
��� ������� ��	���� 	�� ��2����	 �������� =������

��
��+��� ��Æ��
	��� ������ �� 	
� ������ �3��	���� ����+��� 	
�� ��Æ��
	� ��� 	�
	
� ���� ����� �� 	
� ��	�� �, +�����
� 	� ��	����
 �����	�� 0�
�� ��� �� �+�����
,��� 	
� ,��	 	
�	 ��	������ �����	�� 0�
� ���
���� ��
� ��	��	��
 ��������	��
�
��� �	 ������� �����	��	 	� ����	���	 	
� ��� ��
��
�	���� ����������� 	
�
�����	 ���
����� �, 	
� ��	������ ��������	 �, 	
� �����	�� 0�
�� �� ��������	



0���	� 1�#��� �1& 5����� %

+�����
�� �" ��( � .� 	
�� ������ 	
���,���� � ����0�� �3��	��� ���	�� �� ���� 	�
���� ��	
 ���
 � ����
��� �
������ ��������	 +�����
���

.� ����� 	� ���
� 	
� ��� ����
�	��� 	� ���� ����
���	�� ����
��� �� �����
�������� �� ����	����
 �����+����	� �� ������� �� 	
� �������
 ��� �3��	�����
:���� ����� �
���� ���� ��	 �
���� ������	 �, ����
� ��� ������� ����	���� ��
���	 	���	 	
� �
���� 	
�	 ���
���� ��
	�1��������	 ���� ��	
 	
� ������ ���
���� �( � �
� �������� '1��������	 ��� �3��	���� ��� �� �/	����� 	� 	
�
(1��������	 ��� �3��	���� ,�� !1��������	 �
�����

.	 �� �
��� �� 	
�� ����� 	
�	 	
� �3��	��� ���	�� ��	
 	
� ���+� ����01
��	���� ��� �	�

 �� ���		�� �� 	
� ������+�	��� ,��� ��� ��� �
�� �� 	���	��
��������

� 	
����
 	
� 45� ��	
 	
� ��������� �5� 6�/� �
� �����+�
���
��� �����+��	��� ��������� 	� ����	���	 � �5� ��
��� ��� ��
��
�	�� ,�� 	
� (1
��������	 ��� �3��	���� ��	
 ����0�� +�����
��� ;���	���	��� �, 	
� ��
���
�� ���� �� ���	���� !� "� #� ��� $� .� ���	��� %� � ����, ������	 �� ��+�� ����	 	
�
���	���
�	� �, 	
� ������	 ��
��� ,�� ����

�
 �����	�	���� �� �
�� 	
� ,������
�	�
�, 	
� ��
���� 	
��� ��������
 �/���
�� ��� �
��� �� ���	���� &� '� ��� (� �
�
0��	 �/���
� �� ���	��� & �
��� �� �/��

��	 ���
�	� �, ������	 ��
��� ,�� 	
�
���	����� �, �
���� ��� ������	����	���� �
� ������ �/���
� �� ���	��� ' �����1
�	��	�� 	
� ���
�����
�	� �, 	
� ������	 ��
��� 	� ��
	�1��������	 �
����� �
�

��	 �/���
� �� ���	��� ( ����	� 	
� ������	 ��
��� 	� 	
� ����� ���	
�� ����
��
	
�	 ���
���� � ��	��	��
 �����	�� 0�
�� ��� �
��� 	
� ������
�	� �, 
��1�����
��
��
�	��� �+�� �� 	
� 
��1� �������

� �
� �	����� ��� ��������
	 �����
���

�
� 
��	��� �, 	
� ��+�
�����	 �, ��������
 ��
���� ,�� 
������
�� ������+�	���

�� �� 
��� ��� ���
 �!) � �
� ���� 	
�	 �	��
� �����	�	��� ��� �� ������
��
��
	
����
 �� �����/���	� �������	��� 	��� ��� ���� �� ���
� ��
����� �
� ��1
+��	��� �3��	���� 	
� ���	 ����
� 
������
�� �3��	���� ��� �� ���		�� �� � ���
����������
 ��������	� ���	�� ��� �� ��

��

��
? �

��

��
@ )� ���

8
��� � �� �� ��+��	��� ������ 7�	 ��� �� 	
� ��������
 ��
�	��� �, ��� �	
� @ ��� ��� � @ 	��� �
��� 	
� �/�
���	 	��� ��	����	��� �, 	
�� �3��	��� ��

����� � ���
�� @ ���

�
��� � �����

!�� ?



!

����� � !��� ? �����
�� � �!�

�
� �	���
�	� �����	��� ,�� �3��	��� �!� �� � � 
 � ��� ��	
 � @ �����
���
4�������
�17�/� A�����+� ��� 7�/18�����2 ��
���� ��� ��	����� ��	���	���

�
�� ��
��	��� 
 @ �� 
 @ � @ ����
���� ��� 
 @ �� @ ����
����� ������	�+�
��
>�	 �, 	
��� ��
���� ��
� 	
� 7�/18�����2 ��
��� 
�� 	
� ������ ����� ����1
�����

������ �
���1���	����� ��
���� ��� ��
� �����
 �������	��� �� ���

 
�1
��
�-�� ������� 	� �
�����	� ��������
 ����

�	����� �
��� ��
���� ��,���� ����



� �� ������

����	����	 �� 	
� ����
��� ����

� 	
�	 	
� ��
�	���� �� �5�� �
� A�����+
��
��� ��� �� ����0�� 	�

����� � ��� @ ��
����������� � ��� �� ��

��������� � ������� �"�

��	

��
����� @ ���� � ����
!�����

����� @ ����? ����
!��� �#�

�
��� ���Æ����	� ��	��,� 	
� �����	���

) � ��
����� ? ��

������ � �� ) � ��
������ �

�

������� �$�

��� 	
� 	�	�
 +����	��� �	 �	�� 	 ? � ����� 	
�� �����	��� ��

�� ������ @
�

����� ? ��
���������� � ������ ��

���������� � ���

����� � ��
���������� � ��� ? ��

�������� � ������
�
�

��
���������� � �����

?
�

��� ��

����� � ��
����������� � ���

?
�

��

�������� � �����
@
�

����� � ���� �%�

�
��� 	
� �5� �� ��	��0�� ,�� 	
� A�����+ ��
���� �
�� ���
��� �� � 0��	1�����
������ �5� ��
����

.� ����� 	� ��	��� � 
��
��1����� �5� ��
���� �� ���	� �3��	��� �!� �� 	
�
6�/ ,����
�

����� � ���
�� @ �

������� � �������

�� � �&�

	
�� 	
� A�����+ ��� 7�/18�����2 6�/�� �� 	
� ���� �, � � ) ���

������� @ ���� �'�

���
������� @ ��� ? �
!���� ������� � ���� �(�

������	�+�
�� =3��	��� �'� �
��� 	
� ,��	 	
�	 	
� A�����+ ��
��� �� �� ������
��
���� B� ��������� A�����+ ��� 7�/18�����2 6�/�� ��

������ @ �����������
�
����� ?�������

�
������ ��)�

��� ��� ��	���

����� � ���
����� � ���

@ � � �

!
���� �������� ?

�

!
���� ��

������

��
� ����

��	

�� @ ��� � �����
����� � ���� ��!�



0���	� 1�#��� �1& 5����� �

.� ����� ,�� 	
� ��
��� 	� �� �5�� 	
� 
�,	 
��� ���� �, �3��	��� ���� ���	
�� ��	���� ) ��� � ��� 	
� ����
	��� ��Æ����	 �����	��� ��	����� �,	�� ����
����
� �
����� �� 	
� ,�

������

�!

�
� �! � ������ �

������

��
� ! �

!

�� �
� ��"�

�
��
 ������� 	�
) � ������� ������
�� � !� ��#�

;�����
� ���� 
���	��� �
��
 ��+� 	
� ����	����	 ,�� 	
� �5� ��
��� ��	��,�
	
�� �����	����

4�� � ����
�� ���
����� �3��	��� ���	��

��

��
?
�����

��
@ )�� @

��

��
� ��$�

	
� ������� ����
�� �� ��
+�� 	� �+�
��	� 	
� ������ 6�/� 4��� 	
� 6�/ <���1
���� ��	��/ �� �	� �����+�
��� ��� ��� �����+��	��� �� �������� ��� �� �/������
��

���� � �� @
�

����� �� @ ���� ����������� @ ����� ��%�

	
��� 	
� ������ 6�/ ��� �� �+�
��	�� ��

������ @ ���������� @ ���� ?
��

����� @ ����� ?�
��

����

@ ����� ?
��

������ @ ��
! ? ����� �
�

�������
! ?
��

������

@ ��� ? �����
!� �
��

������ �
��

�������
!

@ ��� ? �����
!� �
�

���������
!

@ ��� ? �����
!� �����������
!� ��&�

�
� �������� �, 	
� ��
��� ��������� �� ����������� 	
� ��	����
�	����, �����1
���	 +�����
��� *� �/���
� �� 	
� �9:;7 ��	����
�	��� �� �
��
 � ��� � ���
���
���� �� � ��� � ��

�� @ �� ? ����	� ��
"���� � ����� ? �	? ��
"������ � ����
#� ��'�

�� @ ����� ������	? ����
"���������� ? �	� ����
"�������������
#� ��(�

�
��� �� �� � 
���	�� �	 	
� ���� ����	 ��
*������� 0��	1����� �������� �� ���
���	 	����� �� ��� �
�� ��	��� �� ��1

�
���	 �9:;7 ��
��� ��

��
����

���
� ?

�������

�����
�������� ?

�������

���
������

��������
���

������ � �������

�����
��������

@ ��������� � ��������� �!)�

��	
 � ��	�	��� ������ @ ����� � ��� �



9 �� ������

� �
�
�� ������ �
� �	���� ��� ��	�������� � �
�����
���

.� ����� �
���� ����
�	���� ����	���� �� ���	 	���	 ��
	��
� �
���� �����1
���	�� �
� ����
 ��� �3��	���� ��� �� �/	����� 	� 	
� (1��������	 ���
�3��	���� 	
�	 	���	 !1��������	 �
����� �
� �������������
 ������+�	���1

�� ,��� ,�� 	
��� �3��	���� ��� �� ���		�� �� 	
� ;��	����� ��������	� ���	��
���	�
��� ��

��

��
?
�����

��
?
�
���

��
?
�����

��
@ �� �!��

�
��� 	
� ��������	 +�����
�� ��� � @ ���
��� �� ���
� ��� ��
��� ��� �

��� 6�/ ,���	���� �� 	
� �� 	� 
 �����	���� ��� ������ 	����� ��
�� ��� � ���
	
� �����	�� �����	��� �����	�� 0�
� ��� ������ �����	�� 8
��� � @ �� ? ��
��	
 �� ��� �� ����� 	
� �����	��� �, 0��	 ��� ������ �
���� ��������	�� 9����
A����C� 
��� 	
� ��	����	��� ,��� �, �3��	��� �!�� ��� �� ���		�� ��

�

��

�
�
� ?

�
��		 ?
	
 ?�	��
� @

�
�
�� �!!�

�
��� �
 ��� �� ��� 	
� +�
��� ��� ���,��� �
����	 �, 	
� ���	��
 +�
��� ���
� �� � ���	 +��	�� �����
 	� 	
� ���,��� �, 	
� ���	��
 +�
����

7�	 �� ��0�� � ��	��/ � �
��
 ��	�	�� 	
� � �/�� 	� 	
� �����	��� �, �

� @

����������

�
��

��

�
�

����������
� �!"�

��	


�� @

������
		 	
 	�
��	 ��
 ���
��	 ��
 ���

������ � �!#�

	
�� �3��	��� �!!� �� �/������� ��

�

��

�
�
� ?

�
������		 ?
	
 ?�	��
� @

�
�
�� �!$�

�
��� �� ��� �� ��� ���	 +��	��� 	�����	 	� 	
� ���,��� �, 	
� ���	��
 +�
���
��� ��	
�����
 	� ���
 �	
��� :���� 	
� ,��� �, 	
� ��� �3��	���� ���	 ��
���
����� ,�� 	
� ��	�	��� �, 	
� ��������	� ���	��� 	
� ��
�	���

������		 ?
���	
 ?����	�� @ ����� @ ����� �!%�

���	 
�
� ��$ ��% ��( � �
�� ��� ��� ��	��� ,��� �3��	��� �!$�

�

��

�
�
� ?

�
��������
� @

�
�
�� �!&�



0���	� 1�#��� �1& 5����� �

.�	�������� ��� ��������	 +�����
�� �� @ ���
���� ��� ���
� @ ����	��
����

�	���	� �
���
� ������� ���������
����
�
�!��� ���

� � ��	
 	
� �����	����
���
�� @ ����� @ 
����� 	
�� 	
� �3��	��� ,�� �� ��� �� ���		�� �� 	
�
������+�	��1
�� ,��� ��

�

��

�
��
� ?

�
�������������
� @

�
�
�� �!'�

��	
 ��� @ ����
� @ ��
 @ ������������� ��� @ ��� @ ���� ���� ����
� �

��� @ ���� @ ����� ����� �����
� � ��� ��� @ ���� @ ����� ����� �����

� � �
�
6�/ ,���	��� �� 	
� �����
�-�� ,��� �� ���		��

� @

�
����������������������

��

� ? 
�
�

� ? ��

�� � �

����� � ��

�

�� ? �

�������

��
�

� � �

������ ? �

��������

��
�

� � �

������ ? �

��������

)

�

� ��� � 
��

� ��

�

� ��� � 
��

� ��

�

� ��� ?
��

�

�� ? � �� ���

�

��
�

� ��� ? 
��

� ���� ? 
��

� �����

?����

� �
�

� ���� � 
��

� ����

?����

� �
�

� ���� � 
��

� ����
��
� ��

�
���������������������	

� �!(�

.� 	
� ��
�� ����1�����	���
���1������
��� �:1�1.� ��	����	��� ����
��� � ����
�
0�
� ��

 �� ����	�� �� ��� .� 	
� �/�������� �, �!(�� 	
� �� 	���� ��� ����� 	�
	
� ������� 	
���� ,���	
� ��� 
��	 ��������	� �, 4� ����������� �������� @ )
��� 
�������� @ )� �
� +�����
� ��������	 �, ������ �����	� ��� �����	� ��
�����	�� 
� ��� 	
� +�����
� ��������	� �, �����	�� 0�
� �� ��� ��
�	�� 	�
�������� � �� 	
� �3��	���

� @ �� � ����� � ��

!�
� ��

�

!�
�� �")�

;���	��	� �� 	
��� �3��	���� ��� � ��� �� ��	
 � @  ��!��
�
�
��� � 	
� ��
�1

	����� ����/�  	
� �����	�� ��������
�	�� � 	
� ��� ����	��	� �� 	
� �����
�-�1
	��� �����	�� ��� 	
� �����
�-�	��� 0�
�� ��� �� 	
� �����
�-�	��� 	������	����
�����	�� 
 ��� 	��� � ��� �����
�-�� �� ���!���

��� ��� "�
�!���
���� ��	


"� �����
�-�	��� 
���	
�
4��� �3��	��� �!'�� � ������	� ,����
�	��� �, 	
� ��� �3��	���� �� 	
� 45�

�	�
� �� ���		�� ,�� 	
� ���� ����	 � �� 	
� ,���

�

��
����� ?

�
�
���
�� ��������� ���������� ������ �������#�� @ ���� �"��

�
��� � ����	�� 	
� ���� ����	� ����
������ 	
� ���� ����	 �� �� ����	�� 	
�
+�
��� �, 	
� ���	��
 +�
��� ��

 �
��
 ���
���� 	
� ���� ����	 �� ��� �� 	
�



� �� ������

��	�	��� ��	��/ �	 	
� ��	��,����� ���,��� ��	���� � ��� �� #�� �� 	
� ���,��� ����
�, 	
� � ��� � ��	��,���� ����� ���������� � ��� ����� ��� ���� �������� � ��� ����

��	�	�� �� ��� � ��� ����� �� ��� �	 	
� � ��� � ��	��,���� *���	��� �3��	���
��&�� 	
� 0��	1����� ������ ��������
 6�/ ��� ,�� �3��	��� �"�� �� ��+�� ��

��� @
�

!
������� ������� ?����������������� � ��� � ���

�� ����� � ����� � �"!�

����� 	
� ���� ���	
���� ��	��/ ��� ��� 	
� �����+�
�� ��	��/ ��� ��� ��
��1

�	�� ,��� 	
� ,�

����� �������
�-�	��� �������D

������ @ ������ � �""�

��� @
��

����
������ �������� �"#�

��	
 ��� 	
� 6�/ <������� ��	��/ �, � �	 	
� � ��� � ��	��,���� ��� ����� �
�����	��� �+����� �, ���� ��� ����� *� ���� ,��� �3��	��� �""�� 	
� ����
���	
���� ��	��/ ������	� �, 	
� ���
	 �����+��	��� �, 	
� 6�/ <������� ��	��/
���� � ��� 	
� �������
 ��	��/ ��� ������	� �, �����+�
��� ���� � � @ �	(�

�� ��	 � 
��
�� ����� �, ��������� 	
� �9:;7 �������
 �� ���� �
������ �

��� � �� �3��	��� �"!� 	� � ��� �� ��Æ/�� �
��
 ������	� +�����
�� E��	 �� 	
�
����	�+� ��� ����	�+� ����� �, 	
� ��	��,��� ��& � *���	��� �3��	���� ��'� ���
��(�� 	
�� 	
� ��������
 6�/ �� ��0��� �� 	
� ,�

����� ��
�	���D

��� @
�

!
�������������� ?����������������� � ��� � ���

������� � ����� �

�"$�
��	


������ @ ������� �"%�

���� @ ���� ? ���	� ��
"������ � ������ ? �	? ��
"������ � �����
#� �"&�

���� @ ���� � ���	� ��
"������� � ����� ? �	? ��
"������ � �����
#� �"'�

�
��� 	
� �������
 ��	����� �� ��� �� ������	 �, 	
� ��1��

�� 5�� 7���C� ��2��1
��	���
� 
���	��� �
� �1	
 ��������	� �, �� ��� �� ��� ��
��
�	�� ,��� 	
� �1	

��������	� �, ���� 8�	
��	 	
� ��Æ/�� � ��� �� 	
�� ��� ���		�� ��

�� @
!���� � �������� � ����� ? $

���� � ����� ? ���� � ������ ? $
� �"(�

�� @
!����� � �������� � ���� ? $

����� � ����� ? ���� � ����� ? $
� �#)�

��	
 $ � ���

 ������� .�	����
�	��� ����	� � � ��� � � ��� ��	����� �� �/	������
	
� 
��� �
��
 ������	� ���� ����	� � ��� � 	� 	
� ����
������ ���,��� �, ���	��

+�
�����

* ������� ����
�� �� ��������
 ��� ����
�	���� ��+�
+�� 	
� +��
�	��� �,
	
� 
��� @ ) �����	���� F�	 ��
� ��������
 ������2 ������ ��	 �
�� 	
� ���
�, ������ 6�/�� ��� � ���1;��	����� ���� ���	�� ���� �	 ��Æ��
	 	� ,�
0

 	
�



0���	� 1�#��� �1& 5����� �


��� @ ) �����	��� ��	���	���

�� .� 	
� ������	 ��
��
�	���� �� �/	�� �3��	��� ��
����� 	� �
�����	� ��	�0���
 �����	�� ������
�� �!� � �
� +�����
� ��������	�
�, �����	�� 0�
� �� ��� ���
���� �+��� ��+���
 	��� �	���� �� � ��� 0�
� ���

��+�� ��
��� @ �� ? %�&
'� �#��


�' @ �
����� �#!�

�� ��
+� �3��	��� �#��� 	
� ���E���	� �������
 �;�� ��	
�� �� ���
����

! "
#�������� ��� �
#����	���� ��� ��� ��	��������
� � �����
���

.� 	
�� ���	���� �����+�
��� ��� �����+��	��� ��� �
��� ,�� 	
� (1��������	 ���
�3��	����� 4�� 	
� <������� ��	��/ �, 6�/ ,��	��� �!(�� �����+�
��� ��� � @ �	(
��� ��# 

�� @ ��
�� �#"�

���� @ ��
�����

��� �##�

���� @ ��
���� � �#$�

���	 @ ��
����� �#%�

�
 @ )� �#&�

�� @ ��
�� �#'�

�
���

� �
� � �

�
� @

�

!
��� ?�������� ?����� � #���

�
�
����� � �#(�

�� @ ��
�� �$)�

��	
 	
� ��	�	��� ��� @ ���
�
���

�
�� �� ���

� @ �����
�����
�����
�� ��

�
���

���

�
��� ���


�
��� �� ���

� � .� 	
� �/������� �, �����+�
����
�
��� ���

��� �� ���
�� ���������� 	� ������ *
,��� ,��	 ��� �
�� +�
���	���� ������	�+�
�� .� ����1
	��� 	� ��� ��	����� 	�� *
,+��� 	�� ,��	 ��� 	�� �
�� ��+�� �, �����
 ���
�3��	����� 	
��� ������� ��� ���� ��	���� ��+� �� 	
� (1��������	 ��� �3��1
	����� ;�
��
�	���� �, �����+��	��� ���	 �� ���� ��	
 ������
 ���� �+������ 	
�
��������	��� �, �����+��	��� �
�� ��+� �������	���� ������ ����������
�� ��
����

�
 	� 	
� �����	�� 0�
�� �
� ���
	 �����+��	��� �� �
��
 ���������� 	� ��
��� ��( 

�� @

�
�������������

�
��
�

��
��

��
��

)
)
)

)�$����

)

�
������������	

� �$��



�: �� ������

���� @

�
���������������

)
)


���
����%	���

��
����

����%	����
)

���
��



�
�

����
��



�
�


����
���

�
�� ����

���
�
�����%	���

�� ? ����
���

�
� �� ����

���
�
� ���

)

�
��������������	

� �$!�

���� @

�
�����������������������

&�
&� ���

���� �
&��

�
��
&����

�����
�
�

&��
�
��
&����

�����
�
�

)

&��
��
���

�
�



�
�

&��
��
���

�
�



�
�

&� �)�$���� ? &��
�
� 
�� � ���&�����

�


&��� ����
���

�
�� ?���

���
�
����

�
�

?&� ����
�� � ���� �
� � ���

?&� �� �
� � �����

��
���

��
� �� ?���

���
��
� ���


���� �
�� ?��� �

�� �
&���
�

�
����������������������	

� �$"�

���	 @

�
�����������������������

&�
&���

�
�����

&��
�
���&����

��

�
��
�� ��%	���

��
&��

�
���&����

��

�
��
�� ��%	���

��
)

�&����
��



�
���
�

�
�

�&����
��



�
���
�

�
�

&��)�$���� ? &��
�
� 
�� � ���&�����

�

�&� ����
���

�
�� ?���

���
�
���

����
�� ��%	���
�� ? &�����
�� � ���� �

� � ���
?&���

�
� � �������

���
��
� �� ?���

���
��
� ���


���� �
�� ?��� �

�� �
&���
�

�
����������������������	

� �$#�



0���	� 1�#��� �1& 5����� ��

�
 @

�
�������������

)
)
)
)
�
)
)
)
)

�
������������	

� �$$�

�� @

�
�������������

�
��
�

��
��

��
��

)
)
)

)�$����

�

�
������������	

� �$%�

�
���
���
�� @ ���

�� ? $�
����
�� ?���

�� ? !$������ �$&�

���
�� @ ���

�� ? $�
����
�� ?���

�� ? !$������ �$'�

��
��
�� @ ���

�
�� ? $�
����

�� ?���
�� ? !$������ �$(�

��
��
�� @ ���

�
�� ? $�
����

�� ?���
�� ? !$������ �%)�

&� @ �� �
� ��� �

� ����
�� �
� � � �

� ����� �%��

&� @ �� �
� � ������
�� �

� � � �
� ������ � �%!�

��� $ �� � ���

 �������

$ %���	� ����� ��� �������� 	���
�
���

�
� ��
��	��� �, ������ 	���� ��� �������� �����	���� ������� �� 	
� ���� �,
����
�� 	���	�� �� 	
� ��� ����
�	���� ������
 ������ 	���� ���������� ��
����� ������� ��� ��� ������	��� ��� 
���� ���+�	�	����
 ����
���	��� ��� ����1
����� ,���	���� �
�� ��� ���		�� ��

� @

����������

(� ? (� � "� � "�

�)
� ��
�

�

���)
? ��� ? ���(� ? (��
�� � ��� ���"� ? "��
�� � ��
(� � "�

����������
� �%"�

�
��� (� ��� "� �� @ �� !� ��� ��� ������	��� ��� 
��� 	���� ,�� �1	
 ��� �������� ��
�� 	
� 	������	��� �, ���� �
�� 	
�� ��� ��������� �� �� 	
� 	������	��� �, ����



�8 �� ������

�
�� 	
�� ��� 
��	� ) ��� � ��� ���1���	��
 ��

����� ,��3����� ��� ���+�	�	����

����
���	���� G�����	��� ��� 
��� ��	�� (� ��� "� �� @ �� !� ��� �����
�-�� �� ��
��� "�
�!���

����
* 	�����
 �������� �����	��� �� 	
� ��	�� �������� �� 	� ��+� � �
���� 6��

�� 	
� ���	���� ���� ��� � -��� �������	 �����	��� �� 	
� �����	���� �����
;�����
� ���� �������� �����	���� �� 	
� ����� �������� ��� ��� �
�����

�3��
������� ��+�� �
���� +�
���	�� �� -��� �������	 �����	���� .� 	
� ���� �, :1
�1. ����
���� 	
� �
���� +�
���	� ����������
�� 	� 	
� ������	 �����	�� 0�
�
�� ������� ,��� 	
� 0�
� �
����� ������	 �4*;� 6����� ��	� 	
� ������
����
*������� � ��
�����
 ������
��� �	 �@� !�� 	
��� ��������� ��� ����
�	�� ��
	
� ����� �������� ��� �� 	
� ������
��� ,���

��*�'� @ +
���������� @ ,�� �%#�

* @ *��� ? *���� ��� �� ? *� �,��� �%$�

'
 @ '� � -��,���,��� �%%�


� �
������ @ ���'
��
��� �%&�

�
��� * �� 	
� ������
���� ������	�+�	� 	������ '� �� 	
� ������
���� ��	��	��
�
'
 �� 	
� �����	���
���� ��	��	��
� ,� �� 	
� 4*;� �� �� � ���	 +��	�� �
���
�� ��� +
 �� � �����	����
 ,��	�� �������	�� ��	
 	
� ������� �
��� 0�
� 
����
,��� �@" !� 	� �@� !�� *��� � *���� � ��� *� ��� 	
� ������
���� ������	�+�	���
��� 	� 	
� ��
�� =95� 	
� ��2��� ������
 �������	�	��� ����
�� �� 	
� ��������
��� 	������	���� ��� �������	 �������	�	��� ����
�� �� 	
� ������ 4*; �$ �
G���

�
 ��	��	��
 �� ��	������� 	
����
 -� 	
�	 �� ����	��	 �	 	
� ������ 4*;
��� ) �	 	
� �������� 4*;�

& '������� 	�������
�� 
� � �����
	�� #�������

�����	
�� 	
� ���	 �����,�
 �����1�����	���� ���
 �� 	
� 4�E�	�� 5GG ��� F=;
:H� ����	 	
� +��	��1����

�
 ���
�	��	��� ��	
 � ���	����	�� ������ ���	���
=Æ����	 �	�
�-�	��� �, 	
��� +��	��1����

�
 �����1�����	��� �� �����	��
 ,�� 	
�
,�	��� �	��� �, ����� ��� ����
�	����� .� ����

�
 �����	�	���� ��	
 � ���1
	����	�� ������ ���	��� �	 �� �������
� 	� ��	 � ���1����������
 �	���	�����
�/�� �� 	
� 	
���1����������
 ������ .� � ��
�����
 �����	�� 	
�	 �� �����	��	
,�� ����� �������� 	
�� I����

�
I �/�� �� �
���� 	� �� 	
� �����
 �����	���� *�
���	���	���� ���� ��� 	
�� �� ������	�� �� ��
�����
 ���,���� �
��
 ����	���	
	
� ��������� 	��1����������
 ������

.� 	
� ����	���	��� ������� �, 	
� ���� ���	��� �	 �� �������
� 	
�	 	��1
����������
 ��
�����
 ���,���� ��� ��+���� �� ���	��
 +�
���� �, ����
�� ��-��
������� 	
� ��	����	��� 	��� �	�� �� ���	���	�� �� 	
� ���

��	 ���	��
 +�
����
*� �/���
� ,�� ���
 ���� �, ���� ���	�� �� �
��� �� 4��� �� �
� 
�,	 ����
 ��
4��� � �
��� 	
� ���� �	���	��� �� 	
� ��
�����
 ����� ��������� �
�
� 	
� ���
	
����
 �
��� 
�� 	� ����	���	 � "1� ���� �	���	��� �� �/	������ 	
� ����	��� �,
��
�����

� �

���	�� ����� ��	���� ,��� 	
� ����� ���������



0���	� 1�#��� �1& 5����� �%

	
�� �� ;
�" 
	
��	�
� -�
 	�� %�& 01( ��#��#�	���

.� ����

�
 �����	�	���� �� 	
� ���	����	�� ������ ���	�� �, +��	��1����

�

�����	���� �	 �� �����	��	 	� ����	�,� 	
� ��2������ ��	���� ���	����	�� ��� ��1
������	 ��	� ������ �
� ����

�
 �/�� �� ���� 	� ���	����	� ��������	 +�����
��
	� ���������� ��� 	� ��0�� 	
� �+��
�� ��	� ������ .� 	
� 0��	� +�
��� �5�
��
���� 	
� ���	 ������� 
��� �� ��
��
�	���� ����� ,��� 	
��� ,�� �����+�
���
�#"1$)�� �����+��	��� �$�1%!�� 
���	��� �"(�#)� ��� ��������
 6�/ �!(�� �
��� ��
1
��
�	���� ��� ���� ��3���	��

� �� ������	���� �� � 	��1����������
 ��������	
��	� ����� �,	�� ������� "1� ��������	 +�����
�� ,��� � ���	����	�� ��	� ����
	� 	��1���������
 ��������	 ��	� ������ 9���� 	
�� ��	
�� ����� 	
�	 �� ��
��	 
�+� 	� �����	� ������	���� ��	
 ����

�
 ����������� ����	���	�� �
� ���1
�

�
�-�	��� 	
�� ������ ��
� �� 	
� ���� ������� �
��
 ��

� 	
��� ������	�����
.� 	
� ��
��
�	��� �, ��������
 6�/� 	
� ��������	 +�����
�� �� 	
� ����
������
���� ����	 �, 	
� ��
��
�	��� ����	 ���	 �� ��,����� 	�� �� ����
� 	
�� ��,������ ��
	
� ����

�
 �����	�	���� 	
� �+��
�� ��	� ����� ��� ���� ��	
 	
� ��	� 	�������1
����� >+��
�� ��	� ���	 �� ����
����-�� 	� ��	� �� 	
� ����
������ ����������
��,��� 	
� ������	���� ����� ���������	 �����	���� *,	�� 	
� ���� ��
��
�	�����
	
� 0��
 ������	��� �, 	
� ��������	 +�����
�� �� ���� �� 	
� ���� �������� ��
	
� ���	����	�� ��	� ����� 4���

�� 	�� ���������� ��
��
�	� 	
� ����� ��� ��	��
�������� �����	�����

( )����
	�� �*����� � + ��
������
	 ����	����,

�
� �������� ��2������ ��	���� 	
� ��
�� ������ ��� ��	���	�

�� ����� ���+��
	
� ����-�� ��
�� �	����
��� ��	����� �����	� 	
� ���	������� ��6����� �, ��
��
���+�	�� �
� ��
�� ���� 	
�� ������	�� ��	����	� ��	
 	
� +��� 
���
 ��	���	�

��
������ �57.:�� �	 ���� 
���� ���	���� ,��� 	
� ���� ����� 	
� +�
��� �, 	
�



�� �� ������

����� ����	�� �� 	
� ��
�� ���� �� ��

�� 	
� 
�
����
��� �' ��) ��� �!! �!" � .�
	
�� ���	���� ����
	� ��� �
��� ,�� 	
� ��� ����
�	��� �, 	
� 
�
����
����

*	 � ���	���� �
��� 	
� 
���
 ��� �������� �, 	
� ��
�� ���� ������� ���1
�����
� 	� 	
� �/	����
 57.:� ��������� 	
� ��
�� ���� �
���� 	� ,��� 	
�
	������	��� �
��� ��:�� �
��
 �� � �	���� �
��� ��	
 � ����������� ��	�� #�
�
�� ��	���� 	
� �:� 	
� �
����� �������� ��
�� ���� 6��� 	� 	
� �����	����
�����	��� �, � ���,��� ��	���	�

�� 6�� ����������� 	
� 
�
����
���� �
�� ������
����	������ �� 	
� 57.:� ��� 0

�� ��	
 �
����� ��
�� ���� �
���� �� ��

��
�� 
�
���
��	
 ��:�� .	 �� ������� ������ �� 	
� �: ��� ��	���� �� � 	�����1
	��
 ������	����	� ��	���� 	
� 
�
����
��� ��� 	
� 57.:� ��

�� 	
� 
�
�������
��G�� :��� �����+�	����
 �+������� ������	� 	
�	 	
� ��	���	�

�� ���� �� �
��
����������� �
� ���������� ��	���	�

�� 6�� �������-�� 	
� �
����� ��
�� ����
�
���� �� 	
� �: �� �� ���	��
� ��� ,���� � ��� �
��� �B:�� �
��
 �� � ���1
��	������	�� �
���� �
� �
����� ��	���	�

�� ���� ������ 	
� B: ���	��	� 	
�
�
����� ��
�� ���� 	
����
 	
� �G�

:���� 	
� ,����	��� ������� �, 	
� 
�
����
��� ������	�� ���� �
���� ���
������	����	���� �	 �2��� � ���� ����
�� 	� 	��	 	
� �
���1���	����� ������
�	� �,
	
� �5� ��
���� �
� ��	�� ��� ����� ���������� ,�� 	
� ��
��
�	��� ��� ��	 �	
�))) *9 ��� $) *9� .� 	
�� ���	���� 	
� ��	���	�

�� �
���� ��� 	
� ��
�� ����
�
���� ��� �������� 	� �� ��� ��� ������	�+�
�� ;����3���	
�� �� �� -��� �	 	
�
����� �������� ��� �� �� -��� �	 	
� ���	���� ��������� >� 	
� ����� ���������
� ���������� ��
�� ���� �� ����	��� �
� ��
�� ���� ����� ��� �����	� �	 � *9
��� ������� 	� �� #)) ��J��� ��� $ ���� ������	�+�
�� ��� 	
� �	����	
 �, 	
�
	������
 ��	���
���	��� �����	�� 0�
� �.�4� 
��� �� ������� 	� �� !�'K����.� ��
��	
 . 	
� 
�
��
�	�	���� ������ 	
� ��	�� ��������� 	
� ��
�� ���� ����	����
� ����	��	 +�
���	� �
�
� �	� �����	� ��� �����	�� 0�
� ,�

 ��	
 
�
�����	���
���	���� � �� ��� ��� ���� �
� ��
�� ���� 	������	��� �	 	
� ����� ��������
�� ������� 	� �� �)� L� �
� ������ �����	� ��� 	������	��� �, 	
� ��	���	�

��
������ ��� ������� 	� �� !$ ��J���� )�� ����� ��� �)� L� �
� �����	��� �,
	
� ��	���	�

�� 6�� ��� �����	�� 0�
� ��� ������� 	� �� ����

�
 	� 	
� ��
��	��
�
��� �	����� 1�� ��� 	� 	
� ��
�� ��	�	����
 �/�� �	����� ?
�� �
� �	����	

�, ��	���	�

�� �����	�� 0�
� �� )��$ ��� � ��� �� ��� ��	 ���������� �� 	
��
����
���

4����� ! �
��� 	
� �����
�-�� �3���������� ��� ���	��� �� 	
� ��
�� ������

�
,� ��� ��
��	�� �
���� 
�
,� �
����� �
� ��	���	�

�� ���� �� ,��� 	
� ���
	� �
�
�����
�-�	��� +�
�� ,�� � ��� ���	��� ������� ��� )�)�## �G� ��� )�&� ������1
	�+�
�� 4��� 	
� �������� ���	����	���� 	
� ��E�� �	���	���� �, 	
� 
�
����
����
	
� �: ��	
 ���
 ����� 	
� �G� ��� 	
� B: ��� �
���
� +����
� �� ������	���1
�	���� �
��� 
��
13��
�	� ����
�	���� �, ������	����	��� ��� ��� 	� 	
� �/��

��	
�
���1���	����� ������	� �, 	
� �5� ��
����

*	 	
� B: 	
� ����	�� ������ �, 	
� ��	���	�

�� ���� �� ���+��	�� 	� 	
����

��� �����	�� ��������� �����	���� �, 	
� B:� �����3���	
�� ��� �������� ����1
��	�� �+�� 	
� ����	�� ��������� *	 	
� �G� ��������� ��� ��� �����	�� ��������
��� ������	�� �� 	
� �: �
���� �������� �
��
 �� ����	����� �� � ����
� �,
�
����� ��
�� ���� �������� ,��� 	
� �:� �
� 
��
��	 �������� �� 	
� �: �������



0���	� 1�#��� �1& 5����� ��

	
�� 
� <
�

�
� "�
	
���	��� �� 	�� ��#��
 ��
�

�� 	
� ���� ������ ������� �	 ���	 0��

� ��
���� ��	
 	
� ������� �������� �,
	
� ��	���	�

�� �����

�
� ��
����� �: �������� ������ 	
� ���� ������ ����
���	�� 	
� �
�����
��
�� ���� �
���� 	����� 	
� 
�
��	��
 ����� *	 	
� 6��� �, 	
� 
�
����
����
	
� ��
�3�� �: �
�� 
�
�� 	
� �: 6�� �����	 ����	��
 ����� �� 	
� �������
�
	
�	 �	 �� ��
�3�� �
��� 	
� �����	���� 6�� �� �
���� ��6��	�� ���� ,���
	
� �
��� �����
� >� 	
� ���	����� 	
� 	��
���� �: ������	� �, ���
	1���
� �
����
������� 	
� ���	1�
��� 6�� ��� �����	 ����	��
 �� �	 ��� ;����3���	
�� 	�����	��

������	����	� ��+�
��� �� 	
� �����	���� ��� 	� ������	� ,��	 �� 6�� 	
�	
���	����� ,��� 	
� 6��� �: ,��� � �
�� �� 6�� 	
�	 �/�	� �����	
� ,��� 	
�
	��
���� �:� �
�� �� � ����� ���
����� 	� ,��� � ��

�	1�
���� �: ����
 �����
�� 	
� �����	���� ���� ��� �

- )����
	�� �*����� � +%���� .
���
���� 
�����	�
��,

:���� 	
� ��	����
 �����	�� 0�
� �, 5���� �� ���
����
� ���

� 	
� ��
�� ����
����� � �����	 ���	��	 ��	
 	
� ������
���� 8
�� 	
� ��	����	��� ��������� ��1
	���� 	
� ��
�� ���� ��� �
���	��� ������
���� ��� �	������ �	 
���	 	�� �
����
��������	� ���	 �� ���������� �( �!# �!$ � .� 	
� ���� �, +������� ������
����
	
� ������� ��������	 �, ������
���� �
���� �� >� ����� �
����� 	
� �������
��������	 �, 	
� ��
�� ���� �� �� ����� :� ��� ���	 �������� 	�� �
���� ���1
�����	� 	� ���	������
 	
� ������
���� �
���� ,��� 	
� ��
�� ���� �
����� .�
	
�� ���	���� 	
���,���� 	
� ��
�� ���� �
���� ��� ������
���� �
���� ��� ��1
������ 	� �� ��� ��� ������	�+�
�� .� 	
�� ����
��� ������ 	���� � ��� �����	��

�
�����	��	� ������� 	
� 
��
1�����	� 
��1	������	��� ������
���� �
���� 	
�	
������	� 	
� ��������� ��
�� ���� �	��	�0�� ���+�	�	����

� �� 	
� ��
���� �, ���
������	��� ��� 
���� ���	��
 ����� ��� 	
� ���+�	�	����
 ����
���	���� 4�� 	
�



�9 �� ������

��
��
�	��� �, ��� "�� ��� )� � �	��	�0�� �	����
��� �������� �, > ��� ;>� ��
������� ������ 	
� �
���	� (�� "�� ��� �� ��� ��	 	� -��� �� 	
�� ���	����

�
� ����� ��� ��	�� ���������� �, 	
� ��
��
�	��� ������ ��� �	 � !� ���
�) !�� ��	
 !� 	
� �
���	��� ������� >� 	
� ��	�� ��������� 	
� ��
�� ����
6�� �� ��+�� �� 	
� ���	���� �?�� ���� �
�
� 	
� -��� �������	 �����	��� ��
����	�� �� 	
� �����	���� �1�� ����� 8
��� 	
� .�4 �� ������� 	� �� ����

�

	� 	
� 	1�/��� F��� 	
� ����� ��������� 	
� ���1���	��
 ��

����� ��� ��� �
�����

��������� ������ �������	� �
���,���� 	
� ��� �
�����
 �3��
������ ��� -���
�
���� +�
���	� �����	���� ��� ����	�� �� 	
� ����� ��������� :���� 	
� ���
�
��-�� �, 	
� ������
��� ��� 	
� ��
�� ���� ��� 3��	� ��2����	 ,��� ���
 �	
���
	
� ���� ����	� ���	 �� �

���	�� �� �� 	� �� ����� �� 	
� ������
��� ��� ������
�� 	
� ��
�� �����

4����� " �
��� 	
� ����
	 ,�� 	
� ���	����	���� �, >� �
�,	� ��� 	�	�
 �@�� ?
>�� ���
	� ��� �����	���� �
� ��
�� ���� �� ,��� 	
� 
�,	� �
� 
�,	 ��� ���
	 ����
�
�� 4��� " �
�� ���	���� �, 
�����
�� � ��� 
����
�� �� ������	�+�
�� 8
��� �� 
�� 	
� ��
�� ���� �����	�� �
� ���	��� ������� �� )�! ��� 	
� ���
�� ���	����
��� ���� �	 �+��� ��)� �
� ������� ���	��� +�
�� ,�� � ���
�� ���	��� �� )�)�
�
� ����� ��� 
���� 
�
+�� �, 	
� 	�� ����
� �
�� ���1�
���	 �������� �
����
��� �3��	����
 �
���� ��0��� �� 	
� �����	��� �, 	
� .�4� �
� ��
�� ����
�� �
��
	
� ��-� �, 	
� �
���	� *� �/��

��	 ���	����� �, �
���� ��� ������	����	��� ��
���� �� 4��� "� ����
	� �, 	
� ��
��
�	��� �
�� 	
� ,����	��� �, 	
� B:� �����	��
������� ��� 	
� ��������� �� 	
� ������� ������� *	 	
� ���������� 	
� �������
��� ������� �
���� ,��� �� �� 	
� 
��
1�
	�	��� ���� 	� >� �� 	
� 
��1�
	�	���
����� .� 	
� ���
	���� ������� 	
� ������
���� �	���	��� �
��� ��	
�� ����
�/
,��	����� * ���	 �, >� ���� ����	��	�� ��	� 	
� �����	�	��
 �
��
 ����
	� ,���
	
� ������� ������� �, 	
� .�4� �
��� 	
� ����	��	��� >� ���� 	��� 	� ��	
��
	����� 	
� ���	��
 ���	 �, 	
� �����	�	��
 ��� ,��� � 
��
1�����	� ������� .�

	
�� �� =� "��
�	� $#�-	' ��" )�>=� "��
�	� $
���	' �
���" 	��  #���	



0���	� 1�#��� �1& 5����� ��

	
�� �� <
�

�
� ��#���� �#��� 	�� 
��� #���	 #���

	
��� ����
	�� 	
� ��
�� ���� ��� ������
���� �
����� ��� ���	������
�� �
���
�
�� 	
� (1��������	 ��� �3��	�����

4����� # �
��� �
	�	��� ���	����	���� �, 6��� �������� �G�� �����	�� ��������
�B� ��� �
���� ������� �������� ����� �	 	
� �����
�� ����	� 8
��� ���


���	���
�� �
�� ����	���� �, �����
 ���� ����	�� �
� ��������� ��� �����
�-��
�� 	
� ��
�� ���� ��������� .� 	
� ���	���� ��
�� ����� �
���� ����	�� ������
������	�� ��	
 �, 6��� �������� ��� �����	�� ��������� *	 	
� B:� �
����
����	�� ������ �� ���+��	�� 	� �
���� 	
����
 ������� *� � ����
	� 	
� 6���
�������� ������� �������	 �,	�� ������� 	
� B:� *������
��� 	
� ����������
	
� �����	�� �������� ��������� �
�
� 	
� �
���� �������� ���������� ��� 	� 	
�
,����	��� �, 	
� �����	�� �������� *	 	
� ���������� 	
� �����	�� ������� ��
������	�� �� 	
� 6��� �������� �, ��
� ������
���� �
����� �
�� �������� �,
��
� ������
���� �
���� �� ����	����� �� 	
� �
�	�����-�	��� ��� ��� �
�����

��������� �� 	
� �
���	��� ����� �	����
���� �
� �
���� �������� �� 	
� ��		��
���� �, 	
� ������
��� �� ������	�� �� 	
� ���	��
 �	����
��� 	
����
 ���1
���	��
 ��

�������

� )����
	�� �*����� � +%������� ��� ���	� .������,

* ���
 �, 	
� ����� ���	
�� �2��	 �� 	� �������� ��� ������	������ �, 	
� :1
�1. ����
��� ���	��� .� �����	 ������ 	
� �
���
 ��� ����
�	��� 
�� ������
����������
� �������,�
 �	 ����	���	��� ��� ������	��� 	
� ��
�+��� �, 	
� :1�1.
���	�� �� �$ �% ��! � .	 ��+�� � 	
����	���
 ,�����	��� ,�� 	
� ����
�/ ��
�+���
�, 	
� :1�1. ���	�� 	
�	 �� ���	��

�� �� 	
� ����
��� ������� ��	���� ��2����	
��������



�� �� ������

	
�� �� (����	�
 ��
�� ���*��	���

.� 	
� ��
�� ���� ��	����	��� ��	
 	
� �����	���
���� ������ ��� �����1
	�� ��� 	����,����� ,��� 	
� ��
�� ���� 	� 	
� �����	���
��� 	
����
 ���1
����
 ��� ���������� 	� ������	� �����	���
���� �
���� ���+��	��� �# � 4�����
$ ��
���	���

� �
��� 	
� ����	���	��� �, ���+��	��� ���	��� .� 	
� �����	�1
��
���� 	
� 
����1���
� 	�������	�	��� �, �
���� �� �3��+�
��	 	� � �
���
 �
��	���
0�
�� �
� ������� ���+��� 	
� �����	���
���� ���+��	��� �� �	 	
� ���� 	��� 	
�
������� ������	��� 	
� 4*;�� ������� 	
� �����	���
���� ����������
�� �	����
���	 �� 	������		�� 	� 	
� ��
�� ������
��� �� �� 	
� ������
���� ���+��	��� 	�
,�

�� 	
� �����	���
���� ���+��	��� �" �!% � .� 	
� ������	 ������	 ������	���
	
� �����	���
���� ������ ��� 	
� ������	��� ������
���� 	
� ��� ,���� ��
	
� ������
��� ��	� 	� ����
���	� 	
� ������
���� ���+��	��� ������	 �	����
����
,���	���� *� � ����	�� ���	 �, 	
�� ������ �������	��� �� 	
� ������
���� 4*;�
���	 �� ������� 	
����
 	
� ������ ���+�� �� 	
� ������ ���+������ �� 	
�
���+��	��� ���	��� �
���,���� ��	��� �� � 
��� ,�� 	
� �����	���
���� ���+��	���
�� 	
� �1. ����
��� ���	��� 	
� ������
��� ���	��
� 	
� ��	����	� �, 4*;�

.� 	
�� ���	���� �� ��+��	���	� 	
� �1. ��������� 	
�	 ����	��� 	
� ��
,1
������	���� �� 	
� ���+��	��� ���	��� ���
����� 	
� ������	��� ���
����� �,
	
� �1. ������	 ���	���� 	
� ������
���� ���	��
 �, 	
� �����	���
���� ���0��1
��	���� ��� ������
� �/	������ �, ���+��	��� �	�	�� 	� 	
� ����	���� �
� 4*; ���



0���	� 1�#��� �1& 5����� ��

�
���� ���+��	��� �
�� � ���	��
 ��
� �� 	
� �1. ����
���� �
�
� 	
� �	�	� �, ��1
���� ������ ,�� 	
��� ������	 ���	��� ������� �� 	
� ��
�� ����1�����	���
����
��	����	���� �� �����+� ��� ������	������ �, 	
�� ����
��� 	
���,���� � ��
,1
������	��	 	���	���	 �� ��3����� ,�� 	
� ����
��� �2��	� ��	���� 	
��� ��2����	
�������� ����
� 	
� ��
�� ����� 	
� �����	���
��� ��� 	
� ������
����

.� 	
� ��������
 �	��� �, 	
� :1�1. ����
��� �������� ��������
 ������ ��
	
� 
��1� ������ ���� 	
� ������
��� �
��
� �� �������� 4�� 	
�� �������� 	
�
��� ��
��
�	��� �� ������	���	�� �� �
��� �� �3��	��� �!(� 	� �������� 	
�
�����	 ���
����� �, 	
� ��	��	��
 ��������	 �, 	
� �����	�� 0�
� �� ��������	
+�����
��� 4��� 	
��� ��	��	����� � ����
� �����	�� 0�
� �� ������� �� ��� � ���
�� ��� ��	 ���������� �� 	
�� ���	���� �
� ��	�� ��� ����� ���������� ,�� 	
�
����
�	��� ��� �	 !)) !� ��� " !�� * ���,��� ��
�� ���� ��	
 � ����� �, "$)
��J��� ��� �� .�4 �����	��� �, $ �� �� ������� �	 	
� ���	���� �������� ���
-��� �������	� ��� ������� �	 	
� �����	���� ��������� ��������	 +�����
��
��� ���E��	�� �
��� 	
� 0�
� 
��� ,��� 	
� ����� �������� �@"�) !�� 	� 	
�
������
���� .� 	
� ������
���� �3��	���� �%#� ��� �%$� ��� ��
+�� 	� ��	�
 	
�
��+������� �, 	
� G������� ��� ��

 ������	� ��	
 	
� 4*;�

4����� % �
��� 	
� �������� �, 	
� �����	���
��� 	� 	
� ���	
���� 	������
�, 	
� .�4� �
� ��
�� 0���� �
��� 	
� �������� ���	����	��� �� 	
� ����1������
	
�������� �
��� �, 	
� �����	���
��� �	 	
��� 	����� 8
��� � �� �����
�-�� ��
	
� ��
�� ���� �� �
� ��		�� ��� �

��	��	�� 	
� ���	��
 �����	���
���� ���0�1
���	��� ,�� 	
� ���	
���� .�4� *	 	
�� 	��� �&�& ����	�� �,	�� 	
� ���	
����
	������ �, 	
� .�4�� � 	
��� ��� 
��1�������� �
���� �
��	 �� �����+��� �
� 6��
�	���	��� �	 	
�� 	��� ���	 �
���� ������	�� 	
�	 � 
��� �� ��	��	�� ������ � @1
%) !�� �
��
 �� 	
� ������	 �, ������� ��

 �	���	��� ����� 	
� ���	
���� .�4
�����	��� �# ��� ��

�� 	
� ���	��	 ���	��
 
���� �
� ����	
 �
��� �
��� �� 	
�
������ ��� �$( ����	�� �,	�� 	
� ���	
���� 	������ �, 	
� .�4� �� �
����	��1
�-�� �� ������� �, 	
� ������� �����	���
���� 	
������ �, 	
� �
���� �
��	� ���
�� �������� �� 	
� 6����� ���
�� �
� 	��
1
��� ���0����	��� �, 	
� �
���� �
��	
������ 	
� ����	
 �
��� �� 	
� �����3����� �, �� ��
����� ���+��	����

�
� ����	��� ����	 ������ �� �� �����	 �
���� �, 	
� �����	���
���� ���1
0����	��� �� 	
� ����1���	
 	��
� �
� 	�� ��� �� 4��� % �&!�% ����	�� �,	�� 	
�
���	
���� 	������ �, 	
� .�4� �
��� 	
� �������� ���	����	��� �,	�� 	
� ����	 �
1

��	��	��� 	
� ���������� �, 	
� 
��
1�������� ������ �� 	
� ����� �����	���
���
��� 	
� ,����	��� �, 	
� F=F7 �� 	
� ���	��
� 4����� % �
�� �
��� �������� ���
�	 ���	����	���� �
��� 	
� �� �/�� �� 	
� ����1���	
 ��� ���	��
 ������� ��,���
��� �,	�� 	
� ����	� 8
��� �	 �� �����
�-�� �� 	
� ��
��1���� ����� +�
���	��
*,	�� �@&) ���� � ������ �
���� �, �������� ���0
� �� ���� 	� �	��	 E��	 
���
� 	�����	��� ,��� ��� �	�	� 	� ���	
�� �$ � B�,��� 	
� ����	 ���&) ����� 	
�
�	������	 ��� ,���� ��	� �� 	
� ������ ��	���� �@1�) ��� 1!) !�� *� � ����
	�
���	
���� ���+��	��� �� ���	���	�� �	 �@1�# !�� .� ����	���� � ������
 ,����1
	��� �, F=F7 �� ���� �	 �@1"" !� ��,��� 	
� ����	� *,	�� 	
� ����	 ���&) �����
	
� ���� ����	��� �� 	
� �������� ���	����	��� �
��� � ����� ������ ��+����	�
�
� �������� ���� �����	
� ��+�� ,��	
�� ������ 	� �@1' !�� *	 	
� ���� 	����
	
� ���+��	��� 6�� ��	����� ��	� 	
� ����� �����	���
��� ������ �@1�) !� ��1



8: �� ������

	
�� �� 5��
	�
� 
�/����� ��	����" -
�� 	�� ()& 
���#�	���

�������� �� �����	���� �
����
 	
��� 	�����	��� ���������� � ��� �	���� ��
����
�� ��
��+�� �� 	
� ����1���	
 �
���� �
��	 �� �
��
 ����+���� �����	�� 	������
�� ��
����� �� ���
� ��	��
��
�� �������� ������ �@1�) !�� �
�� �������� �
����
��� �� 	���� � ����
	 �, ������ ���+������ ,��� �����	�� ������ 	� ��	����
 ��1
���� ������ �� 	
� ������� �2��	 �, ���+��	��� �������	�� ��	
 	
� ����+��� �,
�����	�� 	������� �
� ,��	��	 ���	
���� 6�� �� 	
� �
���� �
��	 ������� �,	��
����	 $ ����	�� ,��� 	
� ����	� �
��� 	��
���� 6�� ��������� �	� ������ *,	��
�@&$�" ���� 	
� F=F7 ������ 	� ������

� ��	���	 ����	��
�

������ ����	����� 	
� ������
���� ������	���� ��
����� 	� � 
���� �/	��	
��� 	� �������	�	��� ���	��
�� �
��
 ����� ��
����� 4*;�� *� � ����
	� 	
� ���1
�
��� ��	� ��	���� 	
� �����	���
��� ��� 	
� ������
��� ������� �	������� ���



0���	� 1�#��� �1& 5����� 8�

	
� �����	���
��� ����� 	� 
�
� � 
��+��� 
���� ����+��� 	
� ��
� �, � +�����
�
�1. ����
��� �� ����	��� ����	 �� ��	 �
��� �	 	
� ������	 	��� �$ �

/������	��

�� �� =����? �� ;�� ��
� ��
� ��� 9��� $���9'
8� �� ������? �� ;�� ��
� ��
� ��� ���8�� $���%'
%� �� ������? �� ;�� ��
� ��
� ���� �8�:�� $����'
�� �� ������? �� ;�� ��
� ��
� ���� ���9�% $����'
�� �� ������? �� ;�� ��
� ��
� ���� 8��:�� $8:::'
9� �� !� 0�""�
� �� ;� ����? �� ;�� ��
� ��
� ���� %98% $����'
�� 5� ���#�� �� 5� 5	����#-
��? �� ;�� ��
� ��
� ���� 8��9�� $����'
�� )� @�
����� �� ������? 5 ��� 5��� ��*� ��� �� $���9'
�� �� ������� �� (�
�,
��? �� ;�� ��
� ��
� ��
� ����:� $����'
�:� �� �� ���"�� �� A� ;����
�� <� �� ���� ;� <�,�##� &� �� &�B���,? �� ;�� ��
� ��
�

���� ���� $����'
��� �� ������� )� @�
����? �� ;�� ��
� ��
� ���� �8�9:� $����'
�8� ;� �� 5�
���� C� 4� �
����
� ;� (� D
���
��� E� 4� =� 5����
� � �� &� 5����
	�

&� �� @����
� @� @� @��	�� C� �� (����
"? 6;#���# �����	
� �- �����	�
 ��
��
��

��	
6� A�?��������	�
�� 
�

��� ������� �"� �� 5� A� =�	��� $!;4� @�
����	��
&��� 8:::'   � ����8

�%� (� 1�����
? �� ��� �	� <��
� �
� � $����'
��� (� E
��� �� �� @�? �� ��� �	� <��
� ��� �:: $����'
��� �� ������? ��� � 0#��" &��� �� �� �� $���8'
�9� �� ������? 5A(<= C�,
#� �� %� $���%'
��� E� *�� ���
? �� ��� �	� <��
� �
� �:� $����'
��� )� �� F��� ;� )� �#� -�
� �� �� (��	����? �� ��� �	� <��
� ��� %� $���:'
��� �� ������? �� ��� �	� <��
� ���� %�8 $����'
8:� �� (�
�,
��� �� ������? !
	
� ��
� 5 ��� 5��� 
��� ��� $����'
8�� �� E
�����##� &� E�
��
? �� ��� �	� <��
� ��� �89 $���:'
88� D� C� <�
��
? ����
	������
� ��������� �
������� $A�	�

������� C�, F�
� ��9%'
8%� )� @�
����� �� ������? !"*� 5 ��� ��
� 
����� ��� $����'
8�� �� ������? D�
	� <#���	
 5 ��� ��� 8�� $����'
8�� �� ������? !"*� 5 ��� ��
� 
������ ���� $8:::'
89� �� ������? 6;���
�	��� �������
� �- 	�� .�#"��#����" ��

��	 
�
	�� "�"���"

-
�� � %�& ()& 
���#�	��� �- 	�� 
�#�
 ,��"�����	�
 ��
������
 ��
� ��� #���6�
A�? ��������	��
�� �����
�� ���� �������� ����������� �"� �� �� �� G�� !� �� F�
��� $<�
������ ����'   � �%%���8



並列３次元MHDコードと３次元可視化 
荻野竜樹（名古屋大学太陽地球環境研究所） 

 
１．はじめに 
 
 太陽風と地球磁気圏相互作用の３次元グローバル電磁流体力学的（ＭＨＤ）シミュレーションは、約

２０年前に、力が釣り合った平均的な磁気圏の形をやっと再現できるところから出発して、コンピュー

タとＩＴ技術の長足の進歩に相まって発展を続け、最近では、衛星・地上観測と比較して磁気圏のダイ

ナミックスを議論できる程度にまで成長してきた。こうして、上流の太陽風や惑星間磁場（ＩＭＦ）の

変化に対する磁気圏・電離圏の応答や、磁気圏での大きな擾乱現象であるサブストームや磁気嵐を直接

シミュレーションから調べようとする試みも行われるようになってきた。これらの太陽風磁気圏相互作

用のグローバルＭＨＤシミュレーションを精度よく実行するためには、計算方法の改良が一方で必要で

あると同時に、最大級のスーパーコンピュータの利用、それも効率的な並列計算法の利用は不可欠であ

る。 
 
 そのような並列計算共通プログラム言語の候補として、High Performance Fortran (HPF)と
Message Passing Interface (MPI)があると言われてきた。HPFは、米国の共同研究者が共通プログラ
ム言語として優れていると言っている反面、多くの大型プログラムで性能が十分に出ないという批判の 
声も出ていた。こうした中、2000年から HPF/JA（JAHPFによる HPFの日本拡張版）が使えるよう
になり、VPP Fortranでフルベクトル化フル並列化されている流体コードやMHDコードは、比較的容
易に HPF/JAに書き換えることができて、更にその HPF/JA のプログラムは VPP Fortranと同等の性
能を得ることが示された。しかし、HPF/JAの成功にもかかわらず、HPFの普及は進んでいないのが現
状である。こうして、世界標準並列化言語として最後に残ったMPIに対する期待が高まることになる。
この講義と実習では、VPP Fortranと HPF/JAで書かれた３次元 MHDコードとの比較をしながら、
MPIを用いた並列計算３次元MHDコードの作成と使用方法を主として解説する。 
 
 太陽風磁気圏相互作用などの複雑なシミュレーション結果を理解するためには可視化は必須である。

特に、重要でかつ面倒な２つの機能にアニメーション動画作成と３次元可視化があるが、アニメーショ

ン動画は時間変化を示すことによって磁気圏ダイナミックスの理解を助け、３次元可視化は磁気圏の流

線、磁力線及び電流構造の特徴を明らかにするのに威力を発揮する。さらに、最近話題になっているイ

ンターネットによる情報公開は、簡単にはできないような自己矛盾のないシミュレーション結果を誰も

が即座に見ることができ、現象をよりよく理解する上で強力な手段となりつつある。 
 
 そうした中で、VRML（Virtual Reality Modeling Language）の登場によって、３次元画像処理専
用機と３次元画像処理専用ソフトウエアを持たなくても、誰でも VRML のビューアさえあれば３次元
画像を自分の好きなように見ることができる状況が実現した。自分のコンピュータの処理能力に依存す

るが、ネットスケープやインターネットエクスプローラなどのブラウザを使えば、VRML2.0 対応の
cosmoplayer等のビューアが標準で付いている。パーソナルコンピュータも最近高速になってきたので、



高速の cpuとグラフィックアクセラレータを積み、更に十分なメモリ（256 MB以上）を載せれば、可
視化に十分な性能を発揮できる。また、精度の高い３次元画像を快適に見たいのであればWebspaceや
Cosmoworldsの利用が更に有効である。 
 
２．太陽風磁気圏相互作用の３次元グローバルMHDモデル 
 
 太陽風磁気圏相互作用の３次元ＭＨＤモデルでは、ＭＨＤ方程式とマックスウェル方程式を初期値境

界値問題として、様々な方法でその時間発展を解いている。偏微分方程式を差分化して 2 step 
Lax-Wendroff 法で解く方法などはその例である。空間分解能を上げるための計算方法における様々な
工夫として、非一様格子法、非構造格子法、自動調節格子法、時空間多重格子法の導入などが行われて

いる。以下では、私達が３次元ＭＨＤシミュレーションに用いている高精度計算法の一つである 
modified leap-frog 法について述べる[1－4]。 
 
２．１．基礎方程式 
 
MHDモデルの基礎となる規格されたMHD方程式とMaxwell方程式を以下に示す。  
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 式（１）～（４）はそれぞれ、連続の式、運動方程式、エネルギー保存則より求まる圧力変化の式、

インダクション方程式と呼ばれる磁場変化を示す式である。ただし、ρはプラズマ密度、ｖは速度ベク

トル、ｐはプラズマ圧力、Βは磁場ベクトルである。この８つのパラメータを未知数として求めていく。

ただし、差分法の数値誤差により、Βdに対する J が有限値になるため、式（５）を用いてその数値誤
差を除去している。ここでのΒdは地球の固有磁場としての双極子磁場である。また、Φ≡μ∇2 vは粘
性項である。η=ηo （Τ/Τo）-3/2 は温度に依存した電気抵抗である。ここでのΤ=p /ρはプラズマ温
度であり、Τo は電離層における値で、ηo =0.0005-0.002の範囲にとる。重力項は、g=－go /ζ3 （ζ2 
=x2 +y2 +z2、 go =1.35×10-7（9.8m/s2））は重力加速度であり、γ=5/3は３次元空間における比熱比で
ある。また、粒子の拡散係数Ｄ、圧力の拡散係数Ｄｐ、 μの各係数は、初期値や急激な磁場変化に起因
する短波長の数値的振動を抑制するために人工的に与えたものであり、Ｄ=Ｄｐ =μ/ρsw =0.001（ただ
し、ρsw は太陽風の密度）とした。また、各パラメータは次のものにより規格化した。距離は地球半径



Ｒe =6.37×106 m、密度は電離層における値ρs =mns（1010 m-3 ）、磁場は赤道における現在の双極子磁
場強度Ｂs =3.12×104 nＴ、速度は赤道におけるアルフベン速度ＶA =6.80×106 m/s、時間はアルフベン
通過時間 ts =Ｒe /ＶA =0.937sである。  
 
２．２．座標系と境界条件 
シミュレーションには、図 1に示すような太陽方向ｘ軸正、夕方向ｙ軸正、磁気北極方向ｚ軸正とし
た太陽地球磁気圏座標系を用いて、MHD方程式とマックスウェル方程式を時空間で差分化して、MHD
方程式系における８個の物理変数、プラズマ密度ρ、速度ｖ、圧力ｐ及び 磁場Βの時間発展を解く。
ここでは、朝夕と南北で対称性を仮定した 1/4領域の地球磁気圏モデルを考える。 

 
Therefore the following boundary conditions are imposed for each physical quantity, 
( ) :,,, Bv pρφ =   

(1) fixed boundaryφ = const at ;0xx =   
(2) free boundary 0=∂∂ xφ  at ;1xx =   
(3) free boundary at an angle of 45°to the x  axis, 0=∂∂ yφ  at 0,0 =∂∂= zyy φ  at ;0zz =   
(4) mirror boundary at ,0=z  
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(5) mirror boundary at .0=y  
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(6) all physical quantities are fixed for 

            ( ) ( )5.321222 =≤++= azyx ξξ  

The internal quantity inφ  at the initial state and the external quantity exφ  are at each time 

step connected by the introduction of a smooth function ( )12
0

2
0 +≡ hahaf  as 

            ( ) (8)                                                        1 inex ff φφφ −+=  

where ( ) 1,100 2
0 −== aha ξξ  for aξξ ≥  and 0=h  for .aξξ <  

 
２．３．初期条件 
 初期条件には、「対称面より上流で零のミラーダイポール磁場」と「重力とプラズマ圧力が静的に釣

り合った球対称の電離層」を仮定し、シミュレーション箱の上流から一定の密度、速度、温度を持つ太

陽風を流し始めて、定常状態に近い磁気圏の構造を求める。初期にミラーダイポール磁場を用いる理由



は、上流で流れに平行な磁場成分を含めないためである。前述したように、境界条件としては、上流は

固定端、側面と上下面は磁気圏前面に形成される衝撃波の形状を考慮して、ｘ軸と４５度の角度を持た

せた自由端、下流は面に垂直な方向に自由端、地球の中心を通るｙ＝０又はｚ＝０の面では磁場と速度

のベクトルと矛盾の無い鏡像の境界条件を課す。更に、太陽風やＩＭＦのパラメータを時間変化させて、

磁気圏・電離圏の応答や擾乱現象を調べる。 
初期条件の具体的な関数は次の様に与える。 

 
Density                 
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Plasma pressure 
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Gravity force 

                        ( ) (11)                                                 ,,3
0 zyx

g
ξ

−=g  

Dipole magnetic field 

                        ( ) (12)               2,3,31 222
5 zyxyzxzd −+−−=

ξ
B  

where 6
0 1035.1 −×=g  and ( ) .104.51 7

000
−×=−= γγ gp  

   The solar wind parameters used are 4105 −×=swρ  (corresponding to 3cm5 ). ( )0,0,swsw v=v  

at ).K102(1056.3),km/s800300(118.00441.0. 58
0 ×=×=−−== −

swswsw Tpvxx  and 0=IMFB  

or ( )nT5105.1 4 ±×± − , where IMFB  stands for the z  component of the uniform IMF traveling 
with the solar wind. 
 
２．４．Modified Leap-Frog法の導入 
数値計算法としては、図２に示すような Modified leap-frog 法を用いる。最初の１回を two step 

Lax-Wendroff法で解き、続く (ℓ-1)回を leap-frog法で解き、その一連の手続きを繰り返す。ℓ の値は
数値的に安定の範囲で大きい方が望ましいので、２次精度の中心空間差分を採用するとき、数値精度の

線形計算と予備的シミュレーションからℓ = ８に選んでいる。Modified leap-frog 法は、two step 
Lax-Wendroff法の数値的安定化効果を一部取り入れて、leap-frog法の数値的減衰と分散の小さい効果
をより多く取り入れた、数値的減衰と分散にバランスの良くとれた一種の組み合わせ計算方法となって

いる。また、パラメータℓ を変化させることによって、性質の良く分かった２つの計算方法に一致させ



ることができるので、結果に与える数値誤差の影響も理解し易い利点を持っている。 
 Modified leap-frog法の具体的な計算スキームを次に示す。先ず次の形の偏微分方程式を導入する。 
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(2) Second step 
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(16) 

(17) 



   The concrete procedure of two-step Lax-Wendroff method in the 3-dimensional MHD code is as 
follows; 
 

1. ( )kjif ,,  is given for 12,12 nyjnxi ≤≤≤≤  and 12 nzk ≤≤  
2. ( ) 2,1and,2,1,2,1for,, nzknyjnxikjif ===  is determined from boundary condition 
3. 1st interpolation 
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  ( ) ( ) (19)                                                                                                            ,,,, kjipkjiu =  
4. Calculation of 1st step 
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5. 2nd interpolation 
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6. Calculation of 2nd step 
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(22） 



 この計算スキームは、 ( ) ( )kjipkjiu ,,,, = とおく場合 two step Lax-Wendroff法となるが、 ( )kjiu ,, に

前のステップから計算した値をそのまま使用し、時間幅を tt ∆∆ から
2
1

と２倍すれば、Leap-frog 法に

なる。Modified leap-frog法は、１回目を two-step Lax-Wendroff法、継続する(ℓ-1)回を Leap-frog法
を用いて計算する方法である（図２参照）。 
 
次に伝達方程式 
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を用いて、Modified leap-frog法の数値的安定性を議論する。 
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を用いると、two step Lax-Wendroff法の増幅率 j
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となる。従って、0≤δ≡ 1/ ≤∆∆ xt の時、すべての xk∆=κ に対して ≤LWA2 1 が成立し、数値的に安

定となる。 

leap-frog 法は 

(26)                                                       sinsin1 22
222

1
κκ δδ iALF −+±=  

となり、 1=LFA となって、限界的に安定である。 

従って、Modified leap-frog法の増幅率は次式で与えられる。 

(27)                                                                     /)1(/1
2

lll −= LFLWMLF AAA  

 
Modified leap-frog法（MLF）、2 step Lax-Wendroff法（2LW）及び Runge-Kutta-Gill法 (RKG)に対
する増幅率の絶対値と位相速度の波数依存性を図３に、 lを変化したときの Modified leap-frog 法
（MLF）に対する増幅率の絶対値と位相速度の波数依存性を図４に示す。Modified leap-frog法は絶対
値と同様に位相速度に対しても数値精度が大幅に改善されるのが理解される。 
 
Modified leap-frog法、two step Lax-Wendroff法及び leap-frog法の３種類の計算方法を波動方程式に
適用した結果を図５に、電磁流体力学の非線形現象であるMHD 衝撃波のシミュレーションに適用した



結果を図６に示す。 線形な波動方程式でパルス波の伝搬を差分法で解く場合、波長の短い波ほど数値
的減衰が大きくかつ位相速度が遅いので、パルス波が崩れて後に波列が現れる。その数値的な減衰と分

散が modified leap-frog 法では大幅に改善されているのが見られる。非線形な現象の場合も two step 
Lax-Wendroff法では、数値的分散によって衝撃波の後ろに振動が発生し、modified leap-frog法では、
それが小さく抑えられて衝撃波の形がよく得られているのが分かる。一方、leap-frog法では、振動が深
くなって衝撃波がパルス列に分離しているのが見られる。これは、数値的減衰は無いが数値的分散は存

在する leap-frog法の数値的特性に依存する現象で物理的には意味のないものである。 
 
３．MPIを用いた並列計算MHDコード 
 
 1995 年に Fujitsu VPP500 が使用できるようになって、太陽風と地球磁気圏相互作用のグローバル
MHDシミュレーションを実行するためのフルベクトル化されていた３次元MHDコード（earthb）を
VPP Fortran用に書き換えた。コードの全面的な書き換えを行って、VPP Fortranで計算効率の高い、
ほぼフルベクトル化フル並列化された３次元 MHD コード（pearthb）を作成した[荻野、1997]。その
後、2000年に３次元MHDコードを VPP Fortranから HPF/JAへ書き換えた（hearthb）[荻野、2000; 
Ogino, 2002]。結果的には、HPF/JAで書いた３次元MHDコード（hearthb）も VPP Fortranの３次
元 MHDコードと同様にフルベクトル化フル並列化することができ、計算速度も VPP Fortranと同等
の性能を得ることができた。VPP Fortranでも、HPF/JAでもベクトル並列化MHDコードとしては、
ほとんど同等のものであるが、ベクトル化MHDコード（earthb）とは全く別物である。その最も大き
な違いは、ベクトル化MHDコードは、プログラムサイズを最小化しているのに対し、ベクトル並列化
MHD コードでは並列計算の性質上プログラムサイズの最小化が不可能だったことである。このため、
同じ格子点数のMHDシミュレーションをする場合、ベクトル化コードに比べて、ベクトル並列化コー
ドは約３～４倍のコンピュータメモリが必要である[荻野、2000; Ogino, 2002]。 
 
 2002年になって、周りの人の協力を得て HPF/JAからMPIへと VPP FortranからMPIへの書き換
えを行い、MPI でほぼフルベクトル化フル並列化された３次元 MHD コード（meartb）を作成するこ
とができた。その計算速度は、VPP Fortranと HPF/JAの MHDコードと同等以上の高計算効率を得
ることができた。書き換えの労力だが、VPP Fortran か HPF/JA でフルベクトル化フル並列化された
３次元MHDコードがあれば比較的容易にMPI利用の Fortranコードに書き換えることが可能である。
もちろん、コードによってはフルベクトル化フル並列化を保つために工夫しなければならないことが生

じることがある。MPIでの問題点や大規模計算でMPIをどう使用すべきかは、後の補足説明で行う。 
 
 ベクトル化や並列化した場合、非ベクトル化コードや非並列化コードに比べて何倍の速度向上率が得

られるかを示すものに、アムダールの法則がある。その法則によると、多数の PE（Processing Element）
を用いて高い速度向上率を得るためには、並列化率が 100％に限りなく近いことが極めて重要となる。
従って、高効率のシミュレーションコードを作成するためには、どうやってフルベクトル化とフル並列

化を実現するかにかかっている。実際には、内側の do roopでベクトル化されているので、そのベクト
ル化を維持したまま外側の do roopで並列化をすればよいことになる。よく、「計算時間のかかっている



do roopから並列化せよ」と言われるが、その方法だとある程度までは並列化効率が上がるが、100％に
近い並列化効率を得ることはほとんど不可能である。これまでのベクトル化と並列化の経験からすると、

プログラムの構造をきちんと決めることが最も重要であると確信している。分散メモリ型並列計算機を

用いる場合の並列計算の基本は単純なことで、計算する前に計算に必要な変数を全て各 PEに集めれば
よいわけで、それもできるだけ一括して転送し、転送回数をできるだけ少なくすればよい。即ち、プロ

グラムの構造とは、領域分割の変数（方向）を軸とした計算の流れを示すフローチャートに、効率的な

配列の利用内容を割り付けたものである。並列計算プログラムでは通常作業配列を多く取る必要が生じ

るので、プログラムの構造を決める時に作業配列の量を最小にすることが同時に必要となる。 
 
 具体的なベクトル並列計算の３次元 MHD コード VPP Fortran（pearthb）、HPF/JA（hearthb）、
MPI（meartb）を見てもらうと分かるように、その３種類の Fortran プログラムの基本的構造はほと
んど変わっていない。プログラムの構造をほとんど変えずに、VPP Fortran、HPF/JA、MPIの並列化
指示行を挿入することでプログラムの大半の部分を書き換えることができる。それに、それぞれのコン

パイラーに特有の部分をユニットとして追加すれば、プログラムの大部分ができあがる。後に残される

問題は、大まかに言えば境界条件と入出力である。これらも通常の場合はそれほど深刻な問題とはなら

ない。しかし、MPIで超大型計算まで目標としている場合には、境界条件と入出力には注意が必要であ
る。場合にもよるが、MPIの導入書や解説書に通常書いてある方法はほとんど通用しないと考えておい
た方が無難である。 
 
３．１．MPIによるMHDコードの作成（具体例） 
 
 MPI（Message Passing Interface）の使い方を分かりやすくかつ具体的に解説したものとして、青山
幸也著「並列プログラミング虎の巻 MPI版」がある。その中で、青山氏は、メッセージ交換サブルー
チンについて、「並列化にともなう矛盾（副作用）を解消するために、必要最小限仕方なしに行うもの」

と言明しているが、全く、達観だと思う。これを私なりに具体的に書くと、「計算する前に、できるだ

け一括してかつできるだけ転送回数を少なくして、計算に必要な変数を全て各 PE（Processing 
Element）に集めて計算する」となる。 
 
 それでは、MPI による MHD コードの作成の重要な部分を具体的に見ていくことにする。MPI バー
ジョンのディレクトリ mearthb には、二つの基本的な Fortran プログラムがある。どちらもこのスク
ール用のものである。 
 mearthb_send.f  ：ブロッキング通信mpi_sendとmpi_recvを利用 
 mearthb.isend.f  ：非ブロッキング通信mpi_isendとmpi_irecvを利用した改良版 
３次元 MHDコードは、HPF/JAから MPIへ移植しているので、!hpf$ で示される HPF/JAの指示行
がそのまま残っているが、MPI ではそれらは全てコメント行として扱われる。また、MPI への移植で
変更した部分は全て、CC MPI START と CC MPI END のコメント行で挟まれている。以下では、
mearthb_send.fの説明をする。 
 



 数値計算法としては、Modified leap-frog法を用いていて、k (z)方向に領域分割を行う。プログラム
の計算のパラメータなどは、後の４．１の計算パラメータの設定で詳しく説明しているので、ここでは

省略する。PE（Processing Element）数は npe=2で、isizeは PE数、irankはランク（PE）の番号で、
この場合、isize=npe=2、irank=0,1となる。ksと keは irankでの通常の kの初期値と終期値を示し、
各 irankのローカルな k=k_localとグローバルな k=k_globalの関係は、k_global=k_local+kssで与え
られる。従って、k (z)方向のグローバル変数と並列化後のローカル変数の対応は、 
  k=1,nz2  -> k=ks,ke 
  k=1,nz2-1 -> k=ks,ke1 
  k=2,nz2-1 -> k=ks1,ke1 
となる。また、recvcount と displs は gather する時の各ランクのデータの大きさと各ランクのデータ
の先頭番地を示す。 
 
CC MPI START 
       include 'mpif.h' 
       integer istatus(mpi_status_size) 
       common /para_info/ks,ks1,ke,ke1,kss,irank,isize 
c for mpi_gatherv 
       parameter (npe=2) 
       integer recvcount(npe),displs(npe) 
CC MPI END 
 
 よく使われる１次元方向の分割方法は２種類ある。分割方法１は、あるランクまで同数の koが入り、
それ以後のランクも同数の ko-1が入る方法である。分割方法２は、同数の koが入るランクをできるだ
け多く取り、それ以後のランクは順次減らす方法である。ここでは、分割方法１を採用する。この場合

あるランクまでに入る同数は、ko=nzz=(nz2-1)/npe+1 となる。ここに両側の境界を含めて nz2=nz+2
となっている。k (z)方向に分割した両側にのりしろが１個ずつ必要なので、各 PEに必要な k (z)方向の
配列の範囲は k=(0:nzz+1)で与えられ、大きさは nzz+2と取ればよいことになる。また、fg(nx2,ny2,nz2)
はファイル readと writeのために利用する作業配列である。 
 
CC MPI START 
       parameter(nzz=(nz2-1)/npe+1) 
       dimension f(nx2,ny2,0:nzz+1,nb),u(nx2,ny2,0:nzz+1,nb), 
     1           ff(nx2,ny2,0:nzz+1,nb),p(nx2,ny2,0:nzz+1,nbb), 
     2           pp(nx2,ny2,0:nzz+1,3) 
c for all_gather 
       dimension fg(nx2,ny2,nz2) 
CC MPI END 
 



 分割方法１を用いた、具体的なパラメータは次の部分で与えられる。この計算で、isizeと irankに対
する、ks,ke,kss,recvcount(npe),displs(npe)の値が決められる。recvcount(npe)を計算するのに、
mpi_gather を用いている。この部分はそのまま他のプログラムにも利用できて、それが、理解できる
とMPIの１次元方向の分割方法は主な部分が分かったことになる。 
 
CC MPI START 
       call mpi_init(ier) 
       call mpi_comm_rank(mpi_comm_world,irank,ier) 
       call mpi_comm_size(mpi_comm_world,isize,ier) 
c 
       kk=nz2/isize 
       kmod=mod(nz2,isize) 
c 
       ks=1 
       kss=irank*kk+min(kmod,irank) 
c 
       if (irank.lt.kmod) kk=kk+1 
       ke=ks+kk-1 
       ks1=ks 
       ke1=ke 
       if (irank.eq.0) ks1=2 
       if (irank.eq.isize-1) ke1=ke-1 
c 
       nword=(ke-ks+1)*nx2*ny2 
       call mpi_gather(nword,1,mpi_integer,recvcount, 
     *                 1,mpi_integer,0,mpi_comm_world,ier) 
       displs(1)=0 
       do i=2,isize 
         displs(i)=displs(i-1)+recvcount(i-1) 
       end do 
c 
CC MPI END 
 
 次の２つは、単純なことでデータの read、write及びファイルの入出力は irank=0で実行することを
宣言している。 
 
CC MPI START 
      if (irank.eq.0) then 



       open(11,file='./school/mearthb/meart01.data', 
     1               access='sequential',form='unformatted') 
       end if 
CC MPI END 
 
CC MPI START 
       if (irank.eq.0) 
     * write (6,12) iii,last,nx,ny,nz,n1,n2,n3,n4,n5,n6,eat0,rmu0,aru, 
     1 eud,rrat,hx,hy,hz,t,t1,ro01,pr01,gra,dx2,dy2,dz2,dx4,dy4,dz4, 
     2 bis,(cp(i),i=1,11),(cj(j),j=1,10) 
CC MPI END 
 
 また、k (z)方向には領域分割されているので、k (z)方向のグローバルな変数 k=1,nz2は必ずロー 
カルな変数 k=ks,keに変更しなければならない。 
 
CC MPI START 
       do 22 k=ks,ke 
CC MPI END 
 
 次の部分は、ブロッキング通信を用いて、irankの ksのデータを irank-1にmpi_sendで送り、その
データを irank+1から irankの ke+1に転送することで、のりしろのデータを一つ若いランクの PEに
送る。mpi_barrierは同期を取るためである。 
 
CC MPI START 
       do m=1,nb 
         len=nx2*ny2 
         if (irank.gt.0) then 
           call mpi_send(f(1,1,ks,m),n2,mpi_real,irank-1, 
     &                   100,mpi_comm_world,ier) 
         end if 
         if (irank.lt.isize-1) then 
           call mpi_recv(f(1,1,ke+1,m),n2,mpi_real,irank+1, 
     &                   100,mpi_comm_world,istatus,ier) 
         end if 
       end do 
       call mpi_barrier(mpi_comm_world,ier) 
CC MPI END 
 



 次は、mpi_gathervでデータを irank=0に全て集めて、irank=0でファイルに書き出している。この 
時、書き出しの前にmpi_barrierで同期を取る必要がある。 
 
       do 173 m=1,nb 
CC MPI START 
c      do m=1,nb 
       call mpi_barrier(mpi_comm_world,ier) 
         call mpi_gatherv(f(1,1,1,m),nword,mpi_real,fg(1,1,1), 
     *                    recvcount,displs,mpi_real,0, 
     *                    mpi_comm_world,ier) 
c      end do 
       call mpi_barrier(mpi_comm_world,ier) 
CC MPI END 
CC MPI START 
       if(irank.eq.0) then 
CC MPI END 
       do 1732 k=1,nz2 
        write(ntap) fg(1:nx2,1:ny2,k) 
 1732  continue 
CC MPI START 
       end if 
CC MPI END 
  173  continue 
 
 また、MHDシミュレーションを続ける時、常に速度の絶対値の最大値をモニターすることによって、
数値不安定が生じたかどうかを判定していて、vmax が規格化した値で１を越えたら、その時のデータ
を書き出して計算を終了するようにしている。その vmaxの計算には、mpi_allreduceを用いる。 
 
CC MPI START 
       call mpi_allreduce(vmax,vmax1,1,mpi_real,mpi_max, 
     *                    mpi_comm_world,ier) 
       vmax=vmax1 
CC MPI END 
 
 以上みてきたように、HPF/JAのプログラムをMPIに書き換える場合、CC MPI STARTと CC MPI 
END で挟まれるテンプレート（モジュール）を追加・置き換えすれば、ほとんどそのまま書き換える
ことができる。VPP FortranからMPIへの書き換えもほとんど同じである。こうして、MPIに書き換
えられた３次元 MHD コードは、ほとんどベクトル化と並列化がされていると考えてよい。もちろん、



時々、境界条件の部分で新たな工夫が必要なことが生じることがある。また、中規模までの計算では効

率的な計算が行えたとしても、超大規模計算（３次元 MHD で約１億以上の格子点を使用）の場合は、
更なる注意と考慮が必要である。 
 
３．２．MPI利用についての補足説明 
 
 MPI 利用で、並列計算効率の高いプログラムの作成、境界条件の扱い方、ファイルの read と write
について、補足説明を行う。 
 
(1) 非ブロッキング通信の使用 
 前の節では、ブロッキング通信 mpi_send と mpi_recv を利用していたが、非ブロッキング通信
mpi_isendとmpi_irecvを使用するとプログラムの計算効率が向上する。その使用方法は簡単で、使用
例は mearthb.isend.f にあるのでご覧頂きたい。この場合、非ブロッキング通信を用いるので、送信
mpi_isendと受信 mpi_irecvコマンドと同時に送信・受信の完了を待つ mpi_waitをセットにして用い
る必要がある。 
 
(2) 周期的境界条件 
 周期的境界条件は、次のように最後の番号の PE、irank=isize-1の k=ke-1から、最初の番号の PE、
irank=0 の k=ks へと転送し、更に、最初の番号の PE、irank=0 の k=ks+1 から最後の番号の PE、
irank=isize-1の k=keへと転送すればよい。その具体的な例は、次に示すようなModified leap-frog法
で３次元の波動方程式を解くプログラム、ディレクトリ mwave の mwave3.f.send と mwave3.f.isend
を参照して頂きたい。 
 
CC MPI START 
         if (irank.eq.isize-1) then 
           call mpi_send(f(1,1,ke-1,m),n2,mpi_real,0, 
     &                   110,mpi_comm_world,ier) 
         elseif (irank.eq.0) then 
           call mpi_recv(f(1,1,ks,m),n2,mpi_real,isize-1, 
     &                   110,mpi_comm_world,istatus,ier) 
         end if 
c 
         if (irank.eq.0) then 
           call mpi_send(f(1,1,ks+1,m),n2,mpi_real,isize-1, 
     &                   115,mpi_comm_world,ier) 
         elseif (irank.eq.isize-1) then 
           call mpi_recv(f(1,1,ke,m),n2,mpi_real,0, 
     &                   115,mpi_comm_world,istatus,ier) 



         end if 
       call mpi_barrier(mpi_comm_world,ier) 
CC MPI END 
 
(3) 特殊な境界条件をMPIでどう解くか 
 次の例のように、分割の k(z)方向の変数を逆に並び替える場合は、効率のよい MPI のプログラムを
どのように作るか、考えてみて下さい。ここに、nz2=nz+2，nz3=nz+3 とする。（ヒント：必要最小の
変数をmpi_gathervで irank=0に集めて、並び替え、続いてmpi_scattervで各 PEに配信する方法が
考えられる。） 
 
       do k=1,nz2 
       f(2:nx1,1,k,1:nb) = f(2:nx1,2,-k+nz3,1:nb) 
       end do 
 
(4) readと writeのファイル入出力をどうするか 
 
 地球磁気圏の３次元 MHD コード mearthb_send.f では、データ入出力の作業配列 fg(nx2,ny2,nz2)
を用意して、mpi_gathervでデータを irank=0に全て集めて、irank=0でファイルに書き出している。
これは、配列を増やしてプログラムサイズを大きくする時、大きな問題となる。まず、送受信のバッフ

ァーの制限内に収まっているか、次に irank=0の fg(nx2,ny2,nz2)にデータを全て集めるので、irank=0
のメモリ制限がある。通常の計算（３次元MHDコードでの格子点が約１億個以下）では、ここで書い
ていることは深刻な問題とはならない。しかし、プログラムサイズを極端に大きくする時は作業配列 fg
は使用せず、かつデータを irank=0に全て集めることも止める必要がある。この場合は、個々のランク
（PE）からそれぞれ名前を区別して個々にファイルを書き出し、後でその個々のファイルをまとめるな
ど編集して利用することになる。 
 
(5) MPIのプログラム作成のまとめ 
 
これまでみてきたように、MPI のプログラム作成は簡単だと思って間違いはないと思う。それも、

VPP Fortran や HPF/JA で効率的に書かれたプログラムならなおさらである。そして、フルベクトル
化とフル並列化も多くの場合、容易に達せられるであろう。問題が生じるとすれば、境界条件で発生す

ることが時々ある。また、MPIプログラムの高効率化は使用している並列計算機の特徴や機能とも関係
している。従って、問題が生じたり、高効率化が出ない場合は、センターなどのプログラム相談者に質

問や相談するのがよいであろう。それと並行して、MPIプログラムを利用している研究者が MPIの使
用知識を公開して共有化することも極めて現実的で有効な方法である。この目的で私達は次の

Homepage（http://center.stelab.nagoya-u.ac.jp/kaken/kakenhi.html）を設けて、個々の研究者が得た
並列計算の知識を共有化しようと計画している。 

 



３．３．並列計算法の効率 
 
 ３次元MHDシミュレーションなどの大型シミュレーションを実行するためには、スーパーコンピュ
ータの利用と、ベクトル化や並列化による計算速度の効率化は必須である。表１に、講義と実習で使用

する３次元MHDコードを SUNと VPP-5000（VP Fortran, VPP Fortran, HPF/JA, MPI）で実行した
時の速度の比較を示している。計算時間（sec）は、Modified leap-frog法で１回時間ステップを進める
のに要する時間を示している。SUN（GR720）に比べて、VPP5000(2PE)ではいずれも約 70倍の計算
速度がでていることが分かる。実際の太陽風地球磁気圏相互作用の３次元MHDシミュレーションでは、
約１万回の繰り返し計算をするので、SUN（GR720）で約 20時間、VPP5000(2PE,MPI)で約 20分の
計算時間がかかることが分かる。PEを増やすと更にその差は更に大きくなる。 
 
表１．計算機実習で用いる 1/4領域の地球磁気圏シミュレーション３次元ＭＨＤコードの 
   計算速度の比較：earthb、格子点数(nx,ny,nz)=(180,60,60) 
 
Table 1. Comparison of computer processing capability of 3-dimensional global 
         MHD code with a quarter volume: earthb with (nx,ny,nz)=(180,60,60). 
----------------------------------------------------------------------------------------------------------------------- 
Computer Processing Capability 
A Quarter Model of the Earth's Magnetosphere (nx,ny,nz)=(180,60,60); earthb 
 
computer        number of PEs compiler      sec   (MFLOPS)  GF/PE (date) 
----------------------------------------------------------------------------------------------------------------------  
Fujitsu GR720    (1PE) Fortran 90 (frt)       7.72998 (    136) 0.14 (2002.08.01) 
Fujitsu VPP-5000 (1PE) VP Fortran           0.19342 (  5,428) 5.43 (2002.08.01) 
Fujitsu VPP-5000 (2PE) VPP Fortran          0.10509 (  9,990) 5.00 (2002.08.01) 
Fujitsu VPP-5000 (2PE) HPF/JA               0.11064 (  9,489) 4.74 (2002.08.01) 
Fujitsu VPP-5000 (2PE) MPI                  0.09899 ( 10,606) 5.30 (2002.08.01) 
Fujitsu VPP-5000 (2PE) MPI (isend)           0.09774 ( 10,797) 5.40 (2002.08.08) 
------------------------------------------------------------------------------------------------------------------------  
  frt: Fujitsu VPP Fortran 90    HPF: High Performance Fortran 
  MPI; Massage Passing Interface 
 : MFLOPS is an estimated value in comparison with the computation by 
   1 processor of CRAY Y-MP C90. 
 
 並列計算法の有効性を示すために、VPP Fortranと HPF/JAとMPIで書かれた太陽風地球磁気圏相
互作用の３次元 MHD コードによる Fujitsu VPP5000/64 を用いての計算速度の比較を示す。VPP 
Fortran, HPF/JA及びMPIで同等の計算速度がでていて、その計算効率もかなり高いことが分かる。
これらの並列計算MHDコードはフルベクトル化とフル並列化ができていて、VPP Fortranと HPF/JA



の大規模計算では 400 Gflops程度以上の高効率も実現している。こうして、ワークステーションや PC
の最速のものに対して、最大規模のスーパーコンピュータは大体千倍以上の計算速度を有していること

が理解できると思う。 
 
 配列が（800x200x478, 800x200x670）のように大きくなって、計算の規模が大きくなった場合、MPI
は通常のオペレーションモードではまだ必ずしも十分な高効率の計算速度を実現していない。表２では、

MPI Fortranジョブも高効率が得られているが、これはシングルモードでのテスト結果を示している。
通常のオペレーションモードで必ずしも高効率が得られない理由は、当該のMPI Fortran コードの問
題、ベクトル並列型スーパーコンピュータ VPP5000とのマッチングの問題、MPIの計算時間計測のみ
が他と異なっている問題などいくつかの原因があるようなので、目下調査中である。問題がはっきりす

れば、上述の Homepageなどで示す予定である。VPP Fortranと HPF/JAでは cpu使用時間の累計を
計算時間計測に用いているが、MPI では cpu 使用時間の累計を計る方法が無いので単にジョブの経過
時間を用いている。従って、MPIの計測では多重のジョブが同時に実行されているとそれだけ遅く出て
しまう。いずれにせよ、MPI は使用開始して日が浅いので、解決すべき問題が多くある。MPI は最後
の共通並列計算方法である点からも、その問題解決のためにも MPI の使用知識の共有化は重要である
と考えている。 
 
表２．VPP Fortranと HPF/JAとMPIで書かれた太陽風地球磁気圏相互作用の３次元MHD コードに
よる Fujitsu VPP5000/64での計算速度の比較  
 
Table 2. Comparison of computer processing capability between VPP Fortran and HPF/JA and MPI 
in a 3-dimensional global MHD code of the solar wind-magnetosphere interaction by using Fujitsu 
VPP5000/64.  
------------------------------------------------------------------------------------------------------------------------------------- 
Number    Number of     VPP Fortran             HPF/JA                  MPI 
of PE     grids        cpu time Gflops Gf/PE   cpu time Gflops Gf/PE   cpu time Gflops Gf/PE 
------------------------------------------------------------------------------------------------------------------------------------- 
 1PE     200x100x478   119.607 (  0.17) 0.17 (scalar) 
 1PE     200x100x478     2.967 (  6.88) 6.88     3.002 (  6.80) 6.80 
 2PE     200x100x478     1.458 ( 14.01) 7.00     1.535 ( 13.30) 6.65     1.444 ( 14.14) 7.07   
 4PE     200x100x478     0.721 ( 28.32) 7.08     0.761 ( 26.85) 6.71     0.714 ( 28.60) 7.15 
 8PE     200x100x478     0.365 ( 55.89) 6.99     0.386 ( 52.92) 6.62     0.361 ( 56.55) 7.07 
16PE     200x100x478     0.205 ( 99.38) 6.21     0.219 ( 93.39) 5.84     0.191 (107.19) 6.70 
24PE     200x100x478     0.141 (144.49) 6.02     0.143 (143.02) 5.96    0.1302(157.24) 6.55 
32PE     200x100x478     0.107 (191.23) 5.98     0.110 (186.13) 5.82    0.1011(202.50) 6.33 
48PE     200x100x478     0.069 (297.96) 6.21     0.074 (276.96) 5.77    0.0679(301.51) 6.28 
56PE     200x100x478     0.064 (319.53) 5.71     0.068 (299.27) 5.34    0.0639(320.39) 5.72 
64PE     200x100x478     0.0662(308.91) 4.83     0.0627(324.57) 5.07   0.0569(359.80) 5.62 



 
 1PE     500x100x200     2.691 (  7.94) 7.94     2.691 (  7.94) 7.94 
 2PE     500x100x200     1.381 ( 15.47) 7.73     1.390 ( 15.37) 7.68      1.355 ( 15.77) 7.89 
 4PE     500x100x200     0.715 ( 29.97) 7.47     0.712 ( 29.99) 7.50      0.688 ( 31.03) 7.76 
 8PE     500x100x200     0.398 ( 53.65) 6.71     0.393 ( 54.38) 6.80      0.372 ( 57.50) 7.19 
16PE     500x100x200     0.210 (101.87) 6.37     0.202 (105.74) 6.61     0.193 (110.70) 6.92 
24PE     500x100x200     0.160 (133.70) 5.57     0.150 (142.40) 5.93     0.135 (158.26) 6.59 
32PE     500x100x200     0.131 (163.55) 5.11     0.120 (175.50) 5.48     0.1084(197.10) 6.15     
48PE     500x100x200     0.100 (214.48) 4.46     0.091 (231.69) 4.82     0.0811(263.44) 5.49 
56PE     500x100x200     0.089 (239.48) 4.28     0.086 (244.85) 4.37     0.0688(310.54) 5.55 
64PE     500x100x200     0.0956(222.95) 3.48     0.0844(249.49) 3.90   0.0687(310.99) 4.86 
 
 2PE     800x200x478    10.659 ( 15.33) 7.66    10.742 ( 15.21) 7.60     10.428 ( 15.67) 7.83 
 4PE     800x200x478     5.351 ( 30.53) 7.63     5.354 ( 30.52) 7.63      5.223 ( 31.28) 7.82 
 8PE     800x200x478     2.738 ( 59.67) 7.46     2.730 ( 59.85) 7.48      2.696 ( 60.61) 7.58 
12PE     800x200x478     1.865 ( 87.58) 7.30     1.911 ( 85.49) 7.12      1.771 ( 92.25) 7.68 
16PE     800x200x478     1.419 (115.12) 7.19     1.389 (117.66) 7.35     1.342 (121.81) 7.61 
24PE     800x200x478     0.975 (167.54) 6.98     0.976 (167.45) 6.98     0.905 (180.59) 7.52 
32PE     800x200x478     0.722 (226.33) 7.07     0.717 (227.72) 7.12     0.690 (236.63) 7.39 
48PE     800x200x478     0.534 (305.70) 6.36     0.515 (317.26) 6.61     0.469 (348.38) 7.25 
56PE     800x200x478     0.494 (330.95) 5.91     0.464 (352.49) 6.29     0.433 (377.73) 7.74 
64PE     800x200x478     0.465 (351.59) 5.49     0.438 (373.41) 5.83     0.389 (420.45) 6.57 
 
 4PE     800x200x670     7.618 ( 30.06) 7.52     8.001 ( 28.62) 7.16      7.433 ( 30.81) 7.70 
 8PE     800x200x670     3.794 ( 60.36) 7.54     3.962 ( 57.81) 7.23      3.683 ( 62.17) 7.77 
12PE     800x200x670     2.806 ( 81.61) 6.80     3.005 ( 76.21) 6.35      2.696 ( 84.95) 7.08 
16PE     800x200x670     1.924 (119.00) 7.44     2.012 (113.85) 7.12     1.854 (123.53) 7.72 
24PE     800x200x670     1.308 (175.10) 7.30     1.360 (168.44) 7.02     1.254 (182.61) 7.60 
32PE     800x200x670     0.979 (233.85) 7.31     1.032 (221.88) 6.93     0.955 (239.77) 7.49 
48PE     800x200x670     0.682 (335.62) 6.99     0.721 (317.80) 6.62     0.662 (346.21) 7.21 
56PE     800x200x670     0.595 (384.61) 6.87     0.628 (364.87) 6.52     0.572 (400.59) 7.15 
 
16PE   1000x500x1118     9.668 (123.52) 7.72     9.619 (125.50) 7.84 
32PE   1000x500x1118     5.044 (236.73) 7.40     4.992 (241.83) 7.56 
48PE   1000x500x1118     3.550 (336.40) 7.01     3.479 (346.97) 7.23 
56PE   1000x500x1118     2.985 (400.04) 7.14     2.935 (411.36) 7.35  
32PE  1000x1000x1118     9.979 (239.33) 7.48     9.813 (243.37) 7.61 
48PE  1000x1000x1118     7.177 (332.79) 6.93     7.028 (339.85) 7.08 



56PE  1000x1000x1118     5.817 (410.55) 7.33     5.794 (412.23) 7.36 
------------------------------------------------------------------------------------------------------------------------------------- 
      : Mflops is an estimated value in comparison with the computation by  
         1 processor of CRAY Y-MP C90. 
 
 
４．太陽風磁気圏相互作用の３次元MHDコードの実行 
 
 ここでは、計算機実習で用いる 1/4領域の太陽風と地球磁気圏相互作用の３次元グローバルMHDシ
ミュレーションコードで用いているパラメータの説明をして、ワークステーションなどの普通の計算機

で計算するメモリ節約型のベクトル化コード（earthb10.f）、及び、VPP Fortran, HPF/JA 及び MPI
の３つのバージョンの並列計算３次元MHDコードの計算実行方法とその具体例を示す。 
 
3-Dimensional MHD Simulation of Earth's Magnetosphere 
<Example to execute the MHD Code and Graphic programs> 
 
 We will demonstrate how to execute the 3-Dimensional magnetohydrodynamic (MHD) Simulation 
of Earth's Magnetosphere in 1/4 volume and how to use the graphics programs to make PostScript 
files and VRML files in this section. In the MHD model, MHD and Maxwell's equations are solved 
in the solar-magnetospheric coordinate system by using modified leap-frog method when the 
upstream solar wind and interplanetary magnetic field (IMF) boundary conditions are given. 
Moreover, north-south symmetry and dawn-dusk symmetry are assumed, therefore it is enough to 
solve 1/4 volume as the simulation box. The main simulation Fortran program, earthb10.f is fully 
vectorized and can be executed on many kinds of computers. By executing the main MHD 
simulation code, a simulated binary file is produced as output. When the output binary file is used 
as input, graphics programs can be executed to make PostScript files and VRML files for three 
dimensional visualization. 
 
４．１．計算パラメータの設定 
 ベクトル化された３次元 MHDコード earthb(earthb10.f)で使用しているパラメータの設定を次にま
とめて示す。ベクトル並列化３次元MHDコードでのパラメータの設定内容は同じである。 
 main program : earthb10.f 
     earthb10.f  using modified leap-frog scheme 
     3D MHD simulation of 1/4 earth's magnetosphere 
     Cartesian coordinate   finite resistivity  45 degree boundary 
 
(nx,ny,nz)=(180,60,60)       : grid number without boundary 
 nxp=30                      : parameter to determine earth position 



 last=1024                   : number of time steps 
 iiq0=8                      : a unit of modified leap-frog scheme  
 iip0= 32                    : adjust upstream boundary condition 
 iis0= 1024                  : sampling step of data 
 thx=4.00                    : parameter to adjust time step 
  
(xl,yl,zl)=(90.5,30.5,30.5)Re: length in each direction 
 hx=xl/float(nx+1)=0.5Re     : grid interval in x direction 
 hy=yl/float(ny+1)=0.5Re     : grid interval in y direction 
 hz=zl/float(nz+1)=0.5Re     : grid interval in z direction 
 t=0.5*hx*thx                : time interval 
 t(real)=t*ts                : real time to one time step advance 
        =0.5*0.5*4.00*0.937  : ts is normalization value in time 
        =0.937 sec 
 
 x=0.5*hx*float(2*i-nx2-1+2*nxp) : x position versus grid number 
 y=0.5*hy*float(2*j-3)           : y position versus grid number 
 z=0.5*hz*float(2*k-3)           : z position versus grid number 
 
  where nx2=nx+2, ny2=ny+2 and nz2=nz+2 
 
 ro01=5.0E-4 (5/cc)          : mass density of solar wind 
 pr01=3.56E-8                : pressure of solar wind 
 vsw=0.044   (300km/s)       : speed of solar wind 
 bis=CP(11)=1.5E-4 (5nT)     : amplitude of IMF 
 
 eatt                        : resistivity 
 rmuu                        : viscosity 
 eud0                        : friction or collision term 
 
 
1-dimensional array variable f(i1)=f(i,j,k,m) 
 
 n1=nx+2,n2=n1*(ny+2),n3=n2*(nz+2) 
 nb=8,nbb=11,n4=n3*nb,n5=n3*nbb 
 
 i1=i+n1*(j-1)+n2*(k-1)+n3*(m-1) 
  



    m=1  : rho,  plasma density 
    m=2  : Vx,   x-component of velocity 
    m=3  : Vy,   y-component of velocity 
    m=4  : Vz,   z-component of velocity 
    m=5  : P,    plasma pressure 
    m=6  : Bx,   x-component of magnetic field 
    m=7  : By,   y-component of magnetic field 
    m=8  : Bz,   z-component of magnetic field 
 
 
４．２．計算実行例 
 ベクトル化された３次元 MHD コード earthb(earthb10.f)とベクトル並列化３次元 MHD コード、
MPI(mearthb)、HPF/JA(hearthb)、VPP Fortran(peartb)での計算実行例を次に示す。ベクトル並列化
３次元MHDコードの実行でコンパイルと実行のシェルは、それぞれのディレクトリの中に置いてあり、
実行コマンドの例は readmeファイルに書かれている。 
 
4.2.1. <<execution of main program>> 
1. f77 -O earthb10.f 
2. a.out & 
 
  where file must be defined in open statement like 
 
c      open(10,file='earthb10.data', 
c    1         access='sequential',form='unformatted') 
       open(11,file='earthb11.data', 
     1         access='sequential',form='unformatted') 
c 
or 
1. f77 -o earthb10 -O earthb10.f 
2. earthb10 & 
 
4.2.2. <<compile and execution using by supercomputer, Fujitsu VPP5000>> 
 
(1) MPI (Massage Passing Interface): mearthb 
   All the comand shells are in "readme" file. 
  (1a) TSS 
       mpifrt progmpi.f :compile to make execution file, a.out 
       jobexec -vp 2 ~/school/mearthb/a.out :execution of a.out by 2 PEs 



  (1b) Batch 
       qsub -q c -eo -o pconpmpi2.out pcompmpi2.sh :compile 
       qsub mpi_lim02e.sh :execution of progmpi by 2 PEs 
 
(2) HPF/JA (High Performance Fortran): hearthb 
   qsub -q c -eo -o pconphpf2.out pcomphpf2.sh :compile 
   qsub -q z -eo -lPv 2 -o pexechpf.out pexechpf.sh :execution by 2 PEs 
 
   qsub -q c -eo -o comp.out comp.sh :compile vector mode only 
   qsub -q x -eo -o exec.out exec.sh :execution by 1 PE 
 
(3) VPP Fortran (Fortran 90): pearthb 
   qsub -q c -eo -o pcomp90.out pcomp90.sh :compile 
   qsub -q z -eo -lPv 2 -o pexec90.out pexec90.sh :execution by 2 PEs 
 
４．３．図形処理 
 
 図形処理を統一的に行うためには、次の３つの条件が満たされる必要がある。 
  １．コンピュータの種類に依存しない方法の確立 
  ２．ソフトウエアなど全てを自分たちでコントロールする 
  ３．プログラムなどできるだけ統一的に（共通に）扱う方法の確立 
これを逆にいえば、コンピュータに依存したソフトウエアや言語・仕様は使わない、また、特定の業者

のみが販売する図形処理応用ソフトウエアは使わない、ということになる。紆余曲折したが、画像処理

と図形出力の統一的な扱いのためには、Fortranなどを用いて PostScript画像ファイルを直接作成する
ことが有効な方法であるという結論に達した。その結果として、私達が現在行っているコンピュータシ

ミュレーションの画像処理の統一的な方法を項目としてまとめると以下のようになる。 
 
  (1) シミュレーションデータを IEEE Binary形式で保存 
  (2) Fortranプログラムで PostScript画像ファイルを直接に作成 
       PostScriptファイルを作成するための Interface Subroutine Packageを作成 
  (3) PostScriptファイルからファイル変換ツール（xv, pstogifなど）で圧縮された 
    画像ファイル（gifなど）を作成 
  (4) 圧縮画像ファイル（gifなど）をＷＷＷで公開 
 
 この方法により、Fortranが使えて、その中で大文字と小文字の区別ができれば、コンピュータの種
類によらずに PostScript画像ファイルを作って図形出力を取り出すことが可能になった。また、Ｃ言語
でもできるようにＣ言語用の Interface Subroutine Packageも用意している。 
  http://gedas.stelab.nagoya-u.ac.jp/simulation/jst2k/hpf02.html 



 
4.3.1. graphics program to make PostScript files 
 
 1. gm150b.f (main) + gsub150.f (subroutine) 
    noon-midnight meridian and equatorial plots (black and white) 
 2. gm220b.f (main) + gsub220.f (subroutine) 
    energy distribution of cross section 
 3. gm480b.f (main) + gsub480.f (subroutine) 
    3-dimensional magnetic field lines 
 
<<execution of PostScript graphics program>> 
 
1. f77 -c -O gsub150.f 
2. f77 -O gm150b.f gsub150.o 
3. a.out > gm150b.ps & 
4. gs gm150b.ps 
5. lp gm150b.ps 
 
1. f77 -c -O gsub220.f 
2. f77 -O gm220b.f gsub220.o 
3. a.out > gm220b.ps & 
 
1. f77 -c -O gsub480b.f 
2. f77 -O gm480b.f gsub480b.o 
3. a.out & : output is written in fort.10 
4. mv fort-10 gm480b.ps 
 
 太陽風と地球磁気圏相互作用の３次元グローバルMHDシミュレーションから得られた地球磁気圏の
構造を示す図を、図７．子午面と赤道面及び尾部断面図（白黒：gm150b.ps）、図８．子午面と赤道面
及び尾部断面図（カラー図：gm220b.ps）、図９．磁力線の３次元構造（gm480b.ps）に示す。 
 
 
５．VRMLによる３次元可視化 
 
 ＶＲＭＬ（Virtual Reality Modeling Language）の登場のよって、ＶＲＭＬのビューアさえあれば誰
でも３次元画像を自分の好きなように見ることができる状況が実現した。自分のコンピュータの処理能

力に依存して３次元画像処理（回転、拡大縮小など）の速度は決まるが、最近のネットスケープやイン

ターネットエクスプローラなどを使えば、ＶＲＭＬ2.0対応の cosmo player等のビューアを利用して、



３次元可視化がいつでもどこでも実現できる。 
 
 ＶＲＭＬファイルの作成をどう実現するかであるが、私達は、ＶＲＭＬファイル作成のための 
Fortran Interface Subroutine Packageを準備し、フォートランプログラムを用いて、３次元シミュレ
ーションデータから直接にＶＲＭＬファイル（*.wrl）を作っている。これは３次元と２次元の違いはあ
るが、PostScript画像ファイルを作成する方法と同様の方法である。VRMLのビューアには通常視点を
移動する walkモードと対象物を移動・回転・拡大縮小する examineモードがあり、磁気リコネクショ
ンなどの微細構造の関係を見るのに大変有効である。 
 
５．１．Fortranを用いたサブルーチンパッケージ 
  ftp://gedas.stelab.nagoya-u.ac.jp/sramp/simulation/vrml/ 
  VRML (Virtual Reality Modeling Language) and PostScript Fortran programs   
 
  1.  vrml  
         3-dimensional visualization Fortran program by using VRML 
  2.  PostScript   
         Fortran test program to make PostScript graphic files  
  3.  PostScript2  
         Fortran test program to make PostScript graphic files with subroutine 
 
５．２．地球磁気圏の３次元MHDシミュレーションへの適用 
  ftp://gedas.stelab.nagoya-u.ac.jp/sramp/simulation/earthb/ 
 
 3-dimensional graphics program by VRML files 
    <Virtual Reality Modeling Language> 
 
 1. zvrmagb.f (main) + zvrsubb.f (subroutine) 
    3-dimensional magnetic field lines 
 2. zvrcrob.f (main) + zvrsubb.f (subroutine) 
    cross sectional pattern by pixel image 
     
<<execution of VRML graphics program>> 
 
 1. f77 -c -O zvrsubb.f 
 2. f77 -O zvrmagb.f zvrsubb.o 
 3. a.out & : output is written in fort.10 
 4. mv fort.10 fort.102 
 



 1. f77 -c -O zvrsubb.f 
 5. f77 -O zvrcrob.f zvrsubb.o 
 6. a.out & : output is written in fort.10 
 7. mv fort.10 fort.101 
 8. cat fort.101 fort.102 > zvrml01.wrl 
 
ＶＲＭＬを用いて、シミュレーションから得られた地球磁気圏構造を３次元可視化した例を図 10 に示
す。 
６．おわりに 
 
 富士通 VP-2600、日立 S820、NEC SX-3、CRAY Y-MPなどのベクトル計算機の時代までは、フルベ
クトル化された３次元MHDコードを用いてFortranコンパイラーが載っている全ての計算機を利用し
て、太陽風と地球磁気圏相互作用の３次元グローバルMHDシミュレーションを実行することができた。
この Fortranプログラムの汎用性のために、私達は３次元MHDコードを世界中どこででも動かすこと
ができ、MHD コードの配布などを通して世界中の多くの研究者と共同研究を行うことができた。しか
し、ベクトル並列機と超並列機がコンピュータ シミュレーションの世の中に現れてくるや否や、
Fortranプログラムの並列化の効率を上げるためにコンピュータに依存した様々の異なった手法を採ら
なければならなくなった。多くのシミュレーション研究者は共通のプログラム言語を失い、特定のメー

カーの機種でしか並列化の効率を上げられない、方言の Fortranプログラム言語を使わざるを得ない状
況が発生した。 
 
 そのような閉塞的な状況を打開する並列計算共通プログラム言語の候補として、HPF (High 
Performance Fortran) とMPI (Message Passing Interface)がある。HPFで書かれたコードは、日米
のほとんどのスーパーコンピュータで高効率の計算が期待できないし、その改良版の HPF/JA（日本で
開発改良された HPF の改良版）は高効率が実現できるが、それも現在は日本の富士通と NEC のスー
パーコンピュータに限定され、日立のマシンでは高効率を得ることはできない。こうして、共通並列計

算法としてのMPIに対する期待は益々大きくなっていた。こうした状況下、MPIを用いた３次元MHD
コード作成の具体的方法を例示し、VPP Fortran や HPF/JA と同等以上の高効率計算が実現できるこ
とを具体的に示してきた。MPIは、今後画像処理なども含めて、多くの種類の計算機で広く並列計算に
使われる方法として期待されている。 
 
 太陽風と地球磁気圏相互作用のシミュレーション結果などを理解し、更に、人によりよく理解しても

らうためには可視化は必須であり、アニメーション動画の作成と３次元可視化／３次元画像解析は極め

て強力な威力を発揮する。動画によってその複雑な振る舞いを一目瞭然にすることができ、更に、イン

ターネット３次元言語、ＶＲＭＬの登場によって３次元画像解析を誰にでもすぐに手にすることができ

るようになった。即ち、ネットワークを通して３次元可視化コンテンツの共有化が実現できるようにな

ったといえる。 
 



 世界最高速の性能を誇る国産の新世代並列型スーパーコンピュータを用い、スペースプラズマ現象を

効率よく並列計算できる、HPFやMPIの共通コンピュータ言語を用いた電磁流体コード、粒子コード、
及びハイブリッドコードを作成・普及させて、世界に先駆けた大規模シミュレーションとそれらのコー

ドを連携した大規模シミュレーションから太陽風磁気圏電離圏ダイナミックスやスペースプラズマの

非線形物理に新しい知見をもたらすことが期待される。 
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図１．３次元MHDシミュレーションに用いる太陽地球磁気圏座標系 

     Fig.1 Solar-terrestrial magnetosphere coordinate system in the 3-dimensional MHD simulation. 
 

図２．Modified Leap-Frog法の計算スキーム 
Fig.2 Diagram of Modified Leap-Frog numerical scheme. 



 

 
 

  
 
 
 
 
 

図３ Modified leap-frog 法（MLF）、2 step 
Lax-Wendroff法（2LW）及び Runge-Kutta-Gill
法 (RKG)に対する増幅率の絶対値と位相速度
の波数依存性 
Fig.3 Dependency of the absolute value and 
phase velocity of the amplification factor on 
wave number in cases of modified leap-frog, 
2 step Lax-Wendroff and Runge-Kutta-Gill 
methods. 

図４ lを変化したときのModified leap-frog法
（MLF）に対する増幅率の絶対値と位相速度の波
数依存性 
Fig.4 Dependency of the absolute value and 
phase velocity of the amplification factor on 
wave number for modified leap-frog method 
with different l  values. 

図５ ３種類の計算方法を用いた波動方程

式のシミュレーション 
Fig.5 Simulation of the wave equation for 
3 different kinds of numerical schemes. 

図６ ３種類の計算方法を用いた MHD
衝撃波のシミュレーション 
Fig.6 Simulation of the MHD shock 
wave for 3 different kinds of numerical 
schemes. 



 

 
 

 
 

図７．太陽と地球を結ぶ子午面と赤道面の地球磁気圏

の構造と磁気圏尾部の断面図（白黒図：gm150b.ps） 
Fig.7 Magnetospheric configurations in the 
noon-midnight meridian and equator and cross 
sectional patterns (black and white:gm150b.ps). 

図８．太陽と地球を結ぶ子午面と赤道面の地球磁気圏

の構造と磁気圏尾部の断面図（カラー図：gm220b.ps） 
Fig.8 Magnetospheric configurations in the 
noon-midnight meridian and equator and cross 
sectional patterns (color:gm220b.ps). 

 

 
 

図９．地球磁気圏の磁力線の３次元構造

（gm480b.ps） 
Fig.9 3-dimensional configuration of magnetic 
field lines in the earth's magnetosphere. 

図 10．VRML を用いた地球磁気圏のの可視化
（zvrml01.wrl） 
Fig.10  3-dimensional visualization of the earth's 
magnetosphere by using VRML. 



地球惑星大気擾乱の２次元シミュレーション 

 

品川裕之（名古屋大学太陽地球環境研究所） 

 

１．本シミュレーションの物理的意味 

 地球や惑星の大気は基本的には静水圧平衡の状態にあるが、局所的に急激な加熱や

加速などが起きると力学バランスが崩れて擾乱が発生し、音波や重力波となって遠方

にまで伝搬して行くと考えられている。実際、局所擾乱に関連した多くの現象が報告

されている。 

 例えば、火山の噴火、核実験、雷、積雲に伴う強い対流、超高層のオーロラに伴う

加熱や加速などによって、インフラソニック波（超低周波音波）や重力波が発生・伝

搬することが知られている。また、地震や海洋表面の運動によって大気の下部境界が

動かされて大気波動が発生するという研究もある。反対に、日食のように、局所的に

突然加熱率が減少することによっても同様の大気擾乱や波動が発生するという報告

もある。これらの物理過程は何れも、いまだに完全には解明されておらず、現在、気

象や超高層研究分野で観測的研究と同時に数値シミュレーションによる研究が精力

的に進められている。 

 本課題では、このような大気擾乱過程の基礎を学ぶため、地球、金星、火星の大気

中で局所加熱が発生した場合の、大気変動の基本過程を再現するシミュレーションを

紹介する。 

 

２．モデル 

 本課題のシミュレーションモデルは、２次元（水平・高度）の中性流体シミュレー

ションで、基本場として各惑星大気の静水圧平衡モデルを与え、そこからの変動量を

変数として、加熱による擾乱が与えられた時の変動量を数値的に求めるものである。

数値解法は CIP 法を用いている。CIP 法については、本シミュレーションスクールで

別途解説があるのでここでは省略する。 

 

(1) 座標系 

 座標系は、鉛直・水平の２次元とし、計算領域は、水平方向が-250 km～250 km、

鉛直方向が 0 km（地表）～100 km である。格子点間隔は、水平が 5 km、鉛直は 2 km

としてある。 

 

 



(2) 基礎方程式 

 基礎方程式は、以下のような重力場中の２次元流体方程式である。 

    連続の式： 
∂ρ
∂t

= −
∂ρu
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−
∂ρv
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鉛直運動量方程式： 
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水平運動量方程式： 
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エネルギー方程式： 
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状態方程式： p = ρ R T 

 ここに、x：鉛直座標、y：水平座標、ρ：質量密度、u：鉛直速度、v：水平速度、T：

温度、p：圧力、R：気体定数、g：重力加速度、cv：定積比熱、Q：加熱率。 

 本シミュレーションでは、平衡状態にある基本場(ρ0, u0, v0, T0, p0)からの変動量（ρ' 

= ρ - ρ0など）を変数として解いている。基本場は静水圧平衡∂p0/∂z=-ρ0gとし、他の式

も基本場についてはバランスしていると仮定している。実際のプログラムでは基本場

の平衡の式を用いて、上式を変形している。また、簡単のため、プログラムでは部分

的に２次の項を無視している。さらに、現実の大気では、コリオリ力、熱伝導、粘性

なども、場合によっては重要となるが、本シミュレーションでは含めていない。計算

に用いる単位は cgs 系を用いている。 

 

(3) 基本場のモデル 

 地球、金星、火星の３種類の場合があり、それぞれ下図のようになっている。高度

方向の温度分布は図１、密度分布は図２のようになっている。その値はプログラムで

は、subroutine initl で与えている。これらの値は、近似的な代表値であり、実際の

大気構造は季節や時間・場所によって大きく変動し、この例とは大きく異なる場合が

あることに注意していただきたい。 

 

(4) 初期条件 

 計算では基本場からの変動量を変数としているので、その変動量に対する初期条件

を与える。プログラム中では、地球と火星では、ρ' = u'= v'= T' = 0を与えている。金

星の場合には、ρ' = u'= T' = 0であるが、水平風 u' に対しては、高度分布を与えてい

る（図３）。これは、実際に金星の中層大気で高速の水平風（スーパーローテーショ



ン）が観測されているので、その効果を入れるためである。この水平風については、

subroutine initl で与えているので、受講者が変更することも可能である。 
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図１．基本場の温度分布 
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図２．基本場の質量密度 
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図３．金星大気の水平速度の初期条件 

 

(5) 境界条件 

 鉛直風以外の変数は、上下左右の境界で、勾配が 0であるとしているが、鉛直風に

関しては、地表で速度が 0としている。 

 

３．プログラムの入力パラメータ 

 本シミュレーションでは大気擾乱を発生させるのは加熱である。加熱源の位置は、

図４のように、また、加熱率の時間変化は図５のようになっている。この部分は適宜

変更可能である。ts1, ts2, ts3 については後述参照。 

加熱

-250 km 250 km
0 km

100 km

高

度

水平距離

z0

z1

hy

 



図４．加熱源の位置 
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図５．加熱率の時間変化 

 

 プログラムの主な変数は以下のものである。 

変数 デフォルト値 内 容 

nsteps 3000 計算の反復回数。これに dt を掛けたものが実際の物理時

間になる。 

iatm 1 惑星を選ぶパラメータ。地球=1；金星=2；火星=3 

z0 0.0d+00 加熱源の下端の高度 (cm) 

z1 1.0d+06 加熱源の上端の高度(cm) 

hy 2.0d+06 加熱源の幅(cm)。加熱の中心は y=0 にある。なお、実際

には加熱領域の端ではなだらかに（5 km 程度の幅で）減

衰するようにしている。 

qpeak 1.0d+04 最大の加熱率 (erg/gram/cm3/s) 

ts1 6.0d+01 時間的には加熱率は 0から始まり、ts1（秒）で最大加熱

率(qpeak)に到達する。これに負の値を与えると、周期 ts1

で sin 的に変動する加熱率が与えられる。 

ts2 1.0d+03 ts1 の後、加熱率は時間 ts2（秒）、一定の加熱率を保つ。

ts3 6.0d+01 ts1+ ts2 の後、加熱率は ts3（秒）の時間で 0に戻る。 

dt 0.2 時間方向の刻み幅（秒） 

 

４．各サブプログラムの内容 

main 入出力と、計算のためのサブルーチンを呼ぶ。入力パラメータ

と結果の書き出し方などは変更可能。 

initl 基本場、初期値などを設定する。適宜変更可能。 

prt3 結果を書き出してチェックするための。普段は使わない。 

veloc staggered mesh を使っているので、1/2 mesh ずれたところで

速度を計算するのに使う。 



rhs 移流項以外の項の時間変化を計算する。 

newgrd cip 法では、変数の空間微分の時間発展を計算する必要がある

ので、ここで rhs で計算した値の空間微分の時間発展を計算す

る。 

sift 次のタイムステップに進むために、変数の値を更新する。 

bnd1, bnd2, bnd3 境界条件を与える。 

dcip0 cip 法で移流項を計算する。 

 

５．結果の例 

 本課題の Fortran プログラムをデフォルトパラメータで実行し、その結果を使っ

て IDL プログラムを走らせると、以下の図のような結果が得られる。初期のプログ

ラムでは、加熱源は中央の下におかれ、まず、ここから擾乱が発生し、上方に伝搬

し、さらに水平に伝搬していく様子が現れる。一般に大気の変動量は、密度が下が

るにつれて増大するので、大気上層では非常に大きくなる。そのため、プロットで

は対数を使って表示している。 

 

図７．鉛直速度(u)。（速度(cm/s)の絶対値の対数をとり、その正の値に速度の符号をつけ
たもの。） 

 

図８．水平速度(v)。値の表示方法は図７と同じ。 

 



 

図９．温度変化(T’)。（温度変化(K)を 100 倍して、その絶対値の対数をとり、正の値に
温度変化の符号をつけたもの。） 
 

 

図１０．速度の絶対値。（速度(cm/s)の絶対値の対数をとり、正の値に速度の符号を
つけたもの。） 

 

 

図１１．質量密度変化の割合。（質量密度変化の割合(r/r0)に 10000 を掛け、その絶対値
の対数をとり、正の値に符号をつけたもの。） 

 

［注： 図７～図１１は、実際の IDL プロットでは白黒が反転する。］ 



６．研究テーマ例 

 本プログラムを用いて、各惑星について以下のような研究を行うことができる。 

ただし、条件によっては数値不安定が起きる場合があり、必ずしも解を得られると

は限らない。 

(1) 加熱率の空間分布・時間変化などを変えて、擾乱の生成・伝搬のようすがどの

ように変わるかを調べる。 

(2) 基本場の温度分布、初期の水平風速などを変えて、擾乱の生成・伝搬のようす

がどのように変わるかを調べる。 

(3) 加熱の代わりに「冷却」を入れて、日食によって起きる大気擾乱を調べる。 

 上記以外にも工夫次第でいろいろな現象を調べることができる。 
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