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第�章 テスト粒子解析

本章では、テスト粒子解析手法について概説する。テスト粒子解析は、ある与え
られた電磁界環境の中でプラズマ粒子がどのような振る舞いをするかを計算する
ものであり、プラズマ粒子の運動による電流変化は電磁界環境にはフィードバッ
クされない。粒子の速度更新は微小時間ステップ#�毎に行い、これにより粒子の
軌跡や加速減速を見る。ここで述べる速度更新や位置更新の手法は後述する電磁
粒子シミュレーションやハイブリッドシミュレーションに用いられる。
一般に宇宙プラズマは十分い希薄であり、粒子相互間の衝突はほとんど無視す

ることができる。したがって、本章では衝突項を含まない粒子の運動方程式を考
える。相対論的効果を無視すれば、運動方程式は次式で与えられる。
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ここで、�& �& �& �& �& �はそれぞれ、粒子の速度ベクトル、位置ベクトル、電
荷、質量、電界ベクトル、磁界ベクトルとする。
上の方程式を用いて粒子速度を時間ステップ#�毎に解き進めていく代表的な方

法はいくつかある。それらについて以下説明する。

��� ����� 法
変数 �、� の関数 ��� として、��� の満たすべき微分方程式と初期条件
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を与えて、��� を求める問題を考える。離散的に解くもっとも簡単な方法は、
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から、

���� $ �� % ����	 �� #� ���� 

として計算するもので、����� 法という。しかし、この方法は、後述の方法に比べ
誤差が大きい。

��� 修正 ����� 法
�� から ���� まで積分するとき、����	 �� だけを用いるのではなく、����	 �� と

予測した ������	 ���� を用いると精度が良くなる。この方法は、修正 ����� 法と
いう。予測の方法は、
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� $ ������	 �� % #� ���� 

と予測値を求め、

���� $ �� %
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�
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と、���� を求めなおす。
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����� 法
さらに、４つの予測値を使う方法が、ルンゲクッタ法である。
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と予測値を求め、

���� $ �� %
�

�
�
� % 

� % 

� % 
� #� ����� 

と、���� 求める。

��� �������
����� 法
式 ���� の差分表現は以下のようになる。
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式を見てわかるように、時間�#�における式展開になっている。ただし、�& �は
粒子位置での電界値および磁界値である。この式から ������の値を計算するには
以下のような方法を用いる。
まず、新しい変数として ��と �� を以下のように定義し導入する。
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すなわち、������から電界��で#��
だけ加速を受けた後の速度、および ������

から電界��で#��
だけ加速を受ける前の速度を意味する。これらの変数を用い
て式 ����� を書き換えると以下のようになる。
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この意味は、��から ��へ変化する間に �
�
� ��のローレンツ力によるサイクロ

トロン回転のみが作用するということである。
この式の両辺について ��� % �� との内積をとると ��� � $ ��� �となる。すな

わち、図 ���に示されたように、式 ���

 は ��は ��は大きさが同じで、角度 


だけ回転させたものであることを示す。つまり、式 ����� を#��
分の電界による
加速 
回と、#�分のサイクロトロン回転とに分離したことになる。
詳細は省くが、式 ���

 を整理すると、

�� $ �� %



� % � �
��� % �� � �  � � ���
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θ/2
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図 ���' (�)��� �������
 �
 �*
���
������ ������

となる。ただし、� $ ���� #����
と定義する。上の式で括弧内を ��とすると、
��から ��への計算は

�� $ �� % �� � � ���
� 

�� $ �� % �� � � ���
	 

ただし、� $ 
� ��� % � � とする。
以上をまとめると、粒子の速度更新には以下の �ステップの計算を行うことに

なる。
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この計算方法を��
���
������法という。
速度がわかれば粒子位置 �は速度 �を時間的に積分することにより得られる。
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一般性を欠くが、以下のような方法もある。式 ����� を成分で書くと、
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これを ������ について解くと、
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となり、時間を進めることができる。
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ン法

ここでは、宇宙プラズマを構成する電子、イオンを粒子として扱う電磁粒子シミュ
レーション手法について概説する。

��� 基礎方程式
本シミュレーションコードで用いる基礎方程式は衝突項を含まない粒子の運動

方程式 �式 ���� と式 ���
  および以下に示した"�+,���の電磁方程式である。

��� $ ��	 %
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��

��
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�� 

��� $ ���
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�
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�

��
�
�� 

　� �� $ � �
�� 

ここで、�& 	 & �はそれぞれ、光速、電流密度ベクトル、電荷密度を示す。
"�+,���方程式のうち、式 �
�� &式 �
�� は時間 �$�で満足されておれば、それ

以後の時間においては自動的に満足されるので、基本的には式 �
�� & 式 �
�
 だけ
解けばよい。すなわち、シミュレーションシステム内の電界の初期値を求めるた
めには式 �
�� のポアソン式を解く必要がある。また、式 �
�� より、�次元シミュ
レーション方向での磁場の変動は常にゼロである。

��� 粒子モデルの基本概念
前述のテスト粒子解析とは違い、粒子シミュレーションでは、粒子更新による

電流や電荷の変化が電磁界に影響を与え、その影響が粒子にフィードバックされ
る。すなわち、粒子シミュレーションにおいて、プラズマや電磁界の時間空間発展
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dx

S

X

X2dx

図 
��' 超粒子の形状および -��.� /�)���

は粒子の運動方程式と"�+,���方程式を互いに解き進めることによって得られる
わけである。運動方程式と"�+,���方程式を繋げる物理量は電流密度 
と電荷密
度 �であり、これらはプラズマ各粒子の運動を決定する速度 �& �で表される。し
かし、現実のプラズマは、たとえば、デバイ長を単位とする立方体内に非常に多
数の粒子が含まれるため、���0�& 磁気圏プラズマにおいては ��	 � ���程度 、粒
子一つ一つの運動をすべて追跡することは計算機資源から見ても非現実的である。
また、粒子の運動を追跡する場合、粒子軌跡は連続であるため任意の粒子位置に
おいて電磁界が必要となる。
これらの問題を解決するために 123法 �1����)���2
�3��� を用いる。まず、多くの

現実のプラズマ粒子を代表する大きい電荷、大きい質量をもつ超粒子���.��.����)�� 

を考え、この超粒子を多数用いることによりプラズマ環境を再現する。この超粒
子に空間的にある大きさをもたせる方がより現実のプラズマの性質を模擬するこ
とができる。今回は、簡単のため図 
��に示すような長方形形状を採用する。すな
わち、大きさは空間格子点間隔#�をもつとする。
また、超粒子はシミュレーションシステム内で任意の位置を取ることができる。

超粒子に働く電磁界は粒子同士のクーロン力を直接計算するのではなく、シミュ
レーション空間に離散点として定義された空間格子点にその粒子情報（電流、電
荷）を一旦配分し、それらの情報を用いて同じく格子点上で定義された電磁界成
分について"�+,���方程式を用いて更新する。




��� 電磁界定義のための空間格子点 ��
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図 
�
' 整数格子と半整数格子および各電磁界の定義点

上述のように超粒子は点電荷ではなく広がりがあるため、格子点に電荷量を配
分するときには ���� � � � に従って行う。この重み関数 �を ���.� /�)���と呼
び、図 
�� に示す。ただし� �は格子点位置、� は粒子の中心とする。各超粒子
の運動を更新する際には、その隣接する格子点上の電磁界を超粒子位置に内挿し
それを用いて運動方程式を解く。すなわち、超粒子の情報を格子点を介して電磁
界更新に用い、その電磁界を再び粒子更新に用いるのが123法である。粒子の速
度 �および位置 �更新は上述したが、電磁界の格子点での扱いについて以下に述
べる。

��	 電磁界定義のための空間格子点
テスト粒子シミュレーションでは、粒子ダイナミクスが電磁界に影響を及ぼさ

ないため、電磁界を"�+,���方程式で解き進める必要がなかった。しかし、一般
に、超粒子の運動は電流と等価であり、これによりシステム内の電磁界は変動す
る。この超粒子プラズマダイナミクスによる電流の寄与を"�+,���方程式に取り
込み、電磁界を解き進めるには、それらの各成分を時間的、空間的に離散点に定
義する必要がある。これは、"�+,���方程式を差分形式で解くためである。ここ
では、まず空間格子点について説明する。

"�+,���方程式を中心差分で解きするため、シミュレーションシステム内に整数
格子群 �#��� $ �	 
	 �	 ���	 � $ � と半整数格子群 �� % ��
 #�を用意する。図 
�


に示すように ��	 ��	 ��	 � は整数格子点に定義され、その他の電磁界成分は半整
数格子点に定義される。電界成分と磁界成分は互いに入れ子に配置されているが、
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これは、"�+,���方程式を �方向の空間変動のみを考慮した１次元空間で展開し
てみれば理解できる。また、電流密度 ��	 ��	 ��はそれぞれ電界成分��	 ��	 ��と
同じ格子点に定義する。ただし、整数格子、半整数格子とは便宜上の呼び名であ
り、シミュレーションコード内では、電磁界の配列の添え字は整数であるので混
乱しないように注意する。
前章で��
���
������法による粒子速度更新について述べたが、その際に、粒

子位置での電磁界の値が必要となる。粒子位置での電磁界は粒子位置に隣接する

つの格子点上の電磁界成分を用いて内挿することにより求める。ただ、上述のよ
うに電磁界成分は整数格子、半整数格子の二つの格子システムに定義されている
ため、各粒子位置への内挿法はそれぞれ違う。また、粒子位置での電磁界成分を
求める際には、静電的および静磁的ないわゆる“セルフフォース”に注意する必
要がある。以下にそれについて簡単に述べる。
後述するが、静電界成分は電荷密度を用いてポアソン方程式を満たすように得

られる。すなわち、
���

��
$ � �
�	 

が満たされ、��
����� ���
����� $ �� という関係がシミュレーション内で得られる
（簡単のために �� $ �としている。）。見てわかるように、��は半整数格子点での
定義であるため、電荷密度 �は整数格子点で定義される。すなわち、シミュレー
ションシステム内に分布するプラズマ粒子の各電荷量は各粒子に隣接する整数格
子点に線形的に配分され電荷密度 �が得られ、その情報を元に式 �
�	 から半整数
格子点において電界値��が求められる。　
さて、運動方程式を用いて粒子速度を更新する場合は粒子位置での電界値が必

要であるが、これを上に定義された半整数格子点から内挿して求めると正しい電
界値が得られない。たとえば、速度を持たない �粒子をある点におき、上のように
して求めた電界値を用いると粒子位置での電界値は本来ゼロであるべきが、ゼロ
にはならない。これをセルフフォースという。詳細は省くがこのセルフフォースを
回避するには、"�+,���方程式を解くために半整数格子に定義されていた電界値
��を粒子更新の際にはもともとの電荷配分点である整数格子点に再配分し、その
値を用いて粒子位置に電界値を内挿する。すなわち粒子速度更新の際には��
� $

���
����� % ��
����� �
で得られた値を用いて粒子位置に電界値を内挿するとうま
くいく。つまり、セルフフォース回避の原則として、粒子電荷を配分した格子点で
の電界成分を用いて粒子位置での電界成分を内挿することが言える。同じことが
電流密度 � と磁界�についてもいえる。"�+,���式より �次元では��& ��は

��
����� � ��
����� $ ���
�
��

�
�� 
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となり��と ��および��と ��についてもそれぞれ互いに入れ子になる必要があ
るため違う格子点で定義される。しかし、電流密度は粒子情報から直接得られる
ので、粒子速度更新の際に磁界を用いる場合は電流密度が定義された格子点に磁
界を再配置する必要がある。

��� 時間更新チャート
ここでは、電磁界と粒子の時間発展を解き進める手順を概説する。フローチャー

トを図 
��に示す。時間についても空間同様、整数格子群�#�、半整数格子群 ��%
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��
 #�の 
つを用意し、時間的な中心差分に対応させる。

�� 初期のプラズマ分布より各格子点における電界密度 �を求め、ポアソン式を
解き、初期電界を求める。


� 半ステップ、磁界�を解く。

�� � $ �#�における電界�、磁界�が求まったので運動方程式より � $ �� %

��
 #�における各超粒子の速度 �を求める。

�� � $ ��% ��
 #�の速度を用いて粒子位置 �を半ステップ分進める。

	� � $ �� % ��
 #� における各粒子の位置、速度が決まったので後述の電荷保
存法により電流密度 	 を各格子点で計算する。

�� 磁界�を更に半ステップ進める。

�� � $ ��% � #�における電界�を求める。

�� � $ ��% ��
 #�の速度 �を用いて更に半ステップ各粒子の位置を進める。

以上、�ステップ �#� 分、電磁界および粒子ダイナミクスが時間更新される。こ
れらを繰り返し行うことにより、シミュレーションシステム内でのプラズマ現象
の空間・時間発展を解き進めることができる。

��� 電界及び磁界更新ルーチン
電界の時間更新には式 �
�� を用いる。�次元モデルでは、解くべき式は以下の

�式である。

���

��
$ ���

��
�
�� 

���

��
$ ������

��
� ��

��
�
�� 

���

��
$ ��

���

��
� ��

��
�
��� 

また、磁界の時間更新には式 �
�
 を用いる。�次元モデルでは、解くべき式は
以下の 
式である。式 �
�� から��の変動はないので解かない。

���

��
$

���

��
�
��� 

���

��
$ ����

��
�
��
 




��� 電荷密度ルーチン ��

∆x-
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∆x-
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∆x ∆x
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xp
Xi Xi+1

b a
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a = xp - Xi

b = Xi+1 - xp

   = ∆x - a

図 
��' 4��� ,������
� ������ �
 )��.���
� )����� ��
���*�

ただし、図 
��の時間更新チャートであるように、磁場は運動方程式を解く際に電
界と時間ステップをあわせる必要があるため、#��
分を 
回解くことになる。

��� 電荷密度ルーチン
電界の初期値を得るためには、シミュレーションのはじめにポアソン方程式を

解く必要がある。これにより、初期の電荷密度分布による電界分布が得られ、こ
の電界を用いて、上述の電界更新を行う。ポアソン方程式にはシステム内の電荷
密度 �が必要であるが、これを求めるにはシステム内に存在する超粒子の電荷を
各格子点に配分する必要がある。基本的には図 
��に示した重み関数�を用いて各
格子点に電荷を配分する。その具体的な方法を図 
��に詳しく示す。超粒子の形は
幅#�の長方形とし、その中心位置を ��とすると、もし�� � �� � ����なら格子
点��と����に粒子の電荷 �は配分される。すなわち、���� ��� �#�は ������ 

に配分され、������ � �� �#�は ���� に配分される。
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xp

xp

(n+1) ∆t

Xi Xi+1

qB

qA

       1        qA - qBJi+- = -

       

2
             ∆t

(n+1/2) ∆t

n ∆t

図 
�	' 3����� )�
���5����
 ������ �
 )��.���
� )����
 ��
���* ' 3��� �

��� 電流密度ルーチン
電流密度 	 は各超粒子の速度と位置から計算する。"�+,���方程式の差分形か

ら、��と ��は半整数格子点、��は整数格子点に定義されているが、簡単のため、
一旦、半整数格子点で電流密度	 を計算し、その後 ��を整数格子に再配置するこ
とにする。
��と ��については電荷密度の計算と同じ方法で超粒子のモーメントを隣接する


つの格子点に線形重みで分配する。��については電荷保存法を用いる。これは
システム方向の電荷の連続式

��

��
%� � 	 $ � �
��� 

を常に満たすように電流を求める方法である。差分形で書くと、

����� � ��� $ ���
�����
����� � �

�����
�����  

#�

#�
�
��� 

となる。
超粒子が �タイムステップ #�の時間に �空間格子 #�以上移動しない場合、

������
� を計算するには、
つの場合が考えられる。まず第一の場合は、図 
�	に示




��� 電流密度ルーチン ��

xp

xp
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- qB
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       1      qA Ji+- = -

       

2      ∆t

Xi+2

       3       - qBJi+- = -

       

2          ∆t
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n∆t

図 
��' 3����� )�
���5����
 ������ �
 )��.���
� )����
 ��
���* ' 3��� 


したように粒子が同じ格子内の移動であり、第二の場合は、図 
��にあるように 


つの格子が関係する場合である。
第一の場合は、格子点������における電流値������は時間ステップ#�内に������

の点を通過した電荷量を計算することで得られる。すなわち、

������ $
�
 � ��

#�
�
��	 

となる。ただし、�
& ��は次のように与えられる。

�
 $ �
�� � ����#� 

#�
	 �� $ �

�� � ����� % � #� 

#�
�
��� 

また、第二の場合は、粒子運動が������と������の 
つの格子点での電流に寄
与する。すなわち、

������ $
�

#�

	 ������ $ � ��
#�

�
��� 

となる。ただし、図では、粒子速度が正を仮定したが、負の速度を持つ場合、式
�
��	 と式 �
��� の左辺に��をかける必要がある。以上の方法は、既に公開され
ている��"16�シミュレーションコードにおいて、オリジナルな電流ルーチンと
して実装されている。�"�������� �
� 6����& 3��.���� �.�)� .����� .�*��)�'

���������
 ��)��0��& 7���� 1�8�& .��� 
�& ���� 
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��� 電界補正
上述の電荷保存法による電流計算を用いれば、基本的にポアソン方程式が満た

されるので電荷密度と静電界の関係は正しく解かれていることになる。　しかし、
電流密度を電荷密度と同じ方法（各時間ステップにおいて粒子のモーメントを隣
接する 
つの格子点に配分することにより電流密度を計算）で求めた場合、電荷
の連続の式が常に満たされているとは限らない。この場合、ある一定時間間隔で
ポアソン方程式を陽に解くことにより静電界を補正することが必要になる。ただ
し、�次元モデルの場合、��は静電界のみであり、式 �
�	 の解が��そのものに
なる。また、電荷密度から初期の電界分布を求めるためにも以下のポアソン方程
式を解く必要がある。

��� $ �� �
��� 

差分形式では次にように表される。

���

���
$

������ � 
���� % ������ 

�#� �
�
��� 

ポアソン式の解法はさまざまなものが提唱されているが、空間的に周期境界のも
とでは、高速フーリエ変換を用いた方法が一般的である。すなわち、電荷密度分
布 ���� をフーリエ変換し ��
� を求め、次式から波数空間 
において電位 ��
� 

を求める。
��

���
� $ ��
� �
�
� 


� $ 
 ��! ' � $ �	 
	 ����	 ���
であり、

�� $
��
�9�#+�
 

#��

�
�
� 

得られた電位��
� を逆フーリエ変換することにより各格子点での���� 、すなわ
ち ��を求める。電界値��
����� は次式から求まる。

��
����� $
�� � ����

#�
�
�
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第�章 ハイブリッドシミュレーショ
ン法

	�� 定式化
電子とイオンの特徴的な運動時間、空間を比べた場合、はるかに、電子の方が、

速く、短い。そこで、注目するプラズマ現象が、イオンによって主に生じている
と分かっている場合、すなわち、現象の時間と空間スケールがイオンの運動程度
と分かっている場合は、電子の運動論的効果を陽に解かないシミュレーションを
行うことができる。この手法を、ハイブリッド �:;��2< 法と呼ぶ。そこでは、
イオンを粒子で扱う一方、電子を電荷中性を瞬時に行う流体として扱う。瞬時に
行うためには、慣性を持ってはならないので電子の質量は０となり、光速は無限
大となる。式で表すと、

�� $
�
�	���

�� ���� 

"�

��
� � ���
 

�

#

� � ���� 

まず、ハイブリッド法で用いる方程式系を導入するために"�+,��� 方程式 �
��

� 
�
 と次の電子流体要素に対する運動方程式の規格化を行う。

����
���

��
$ �$���� % �� �� ��
� ���� 

規格化定数は、

速度 � � =� #

時間 � � 
�

��

長さ � � =� ��
��

磁場 � � =� ��

電場 � � =� #
��
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密度 � � =� ��

圧力 % � =%
��

�

���

を用いる。"�+,��� 方程式 �
�� � 
�
 を規格化すると、

� =�

�=�
$ �

�

#

 �� =�� =� � =	 ���	 

� =�

�=�
$ � =�� =� ���� 

となり、式 ���	 において、式 ���� を満足し、かつ、左辺が有限値になるためには、

=�� =� � =	 $ � ���� 

でなければならない。
電流は、

=	 $
�

=�� =�� ���� 

$ =��
=�� %

�
���

=�� =�� ���� 

と定義されるため、電子の流体速度は、式 ���� を使って、

=�� $ �=	 ��
���

=�� =�� � =�� $
�
=��

�
�
���

=�� =�� � =�� =� ����� 

と求まる。
次に電子流体の運動方程式は、

� =��

�=�
$ ��

="�

=��
 � =� % =�� � =� %

�


 =��

=� =%� ����� 

となり、式 ���
 を満足し、かつ、左辺が有限値になるためには、

=� % =�� � =� %
�


 =��

=� =%� $ � ����
 

でなければならない。
したがって、電場は、

=� $ � =�� � =� � �


 =��

=� =%� ����� 

と求まる。
つまり、電子の流体速度と電場の値は、時間積分を行い求めるのではなく、各時



��
� タイムチャート 
�

間で、他の変数から求める。
電子の圧力勾配は、状態方程式から求める。例えば、断熱変化を仮定した場合、比
熱比 &を用いて

=%�
=��
��

$ �'�(�� ����� 

から求める。イオンの各粒子については、以下の運動方程式を解く。

� =��
�

�=�
$ �

=)�

="�

 � =� % =��
� � =� ����	 

まとめると、解き進めて行く方程式は、�以降、～記号を省略 

��

��
$ ���� ����� 

� $ ��� �� � �


��
�%� ����� 

�� $
�

��
�
�
���

��� � ���� ����� 

�� $
�
���

�� ����� 

���
�

��
$ �

)�

"�

 �� % ��
� �� ���
� 

である。
�、�、�、
 �、� は、空間上に定義したグリッド上でのみ定義される。また、
!����1����)�� 計算の時のような半グリッドずらした場所での変数の定義は無い。

	�� タイムチャート
まず、時間 �� $ �#� で、粒子の位置 ��、グリッド上での磁場 ���* 、イオンの

密度 ��
� �* が分かっていて、������ $ ��% ��
 #� で粒子の速度 ������ が分かっ

ていたとする。ここで、> は、グリッド位置 *#� を表すとする。���.�/��� 法でイ
オン粒子を時間的に進めるため、イオン粒子の位置と速度の情報は、時間的にず
れて定義する。

-7�1 �' � $ �� でのグリッド上でのイオンフラックス + �
� �* を求める。

+ �
� �* $ ������

�
�

���� ���*  ���
� 
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V
#
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#

N
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t = dt( +1/2)n

t = dtn

t = dt( +3/2)n

t = dt( +1)n

図 ���' 時間の進め方。○の時間での値は既知。●の値は、○から時間を進めるこ
とによって求める。△の値は、他の量から求める。
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-7�1 
' 粒子の位置を進める。

���� $ �� % ������#� ���

 

-7�1 � ? �' � $ ���� でのグリッド上でのイオンの数密度とフラックスを求
める。

�����* $
�
�

������ ���*  ���
� 

+ ���
� �* $ ������

�
�

������ ���*  ���
� 

-7�1 	' � $ ������ でのイオンの数密度、速度、イオン電流を求める。

������ $ ��� %���� �
 ���
	 

� ����� $ �+ �
� % + ���

�  ��
�
�����
�  ���
� 

	����� $
�
���

)��
������ ����� ���
� 

-7�1 �' 磁場を進める。後述の有理ルンゲクッタ法を使う。
��

��
$ ���� ���
� 

-7�1 � ? �' 粒子の速度を進める。

������ � ������

#�
$ �

���� %
������ % ������



�� ���� ���
� 

ここで、

�
�����* $

�
�

���������� ���*  ����� 

�
�����* $

�
�

���������� ���*  ����� 

は、粒子の存在する位置での電場と磁場の値である。
また、���� は、

���� $ �� ���
� ����� � �


��

�%� ����
 

$ � �

��
�
�
���

)��
���
� � ���

� ������� � �


��
�%� ����� 

から求め、# ���
� は

� ���
� $ ,��

�����
� % ,��

�����
� % ,��

�����
� % ,��

�����
� ����� 

,� $ 		�
�	 ,� $ �	��
�	 ,� $ ���
�	 ,� $ ���
� ����	 

から求める。
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	�	 有理ルンゲクッタ法 �
������� 
���� ����� �������

@��8�)0 によって提案された非線形のルンゲクッタ型積分法で、

��

���
$ ���	 �

�

 ����� 

のような時間に関する微分方程式においては、次式で表される。�２次精度の場合 

�� $ ���	 �
�

 ����� 

�� $ ��� %
#�

�



��	 �

�

% #�
�

 ����� 

�� $ 
�� � �� ����� 

全グリッドでの値の内積和を以下のように求め、

-�� $
�
�

���	 �� ����� 

-�� $
�
�

���	 �� ����� 

-�� $
�
�

���	 �� ����
 

これらを使って、#�
�

時間を進める。

���� $ ���� % #�
� 
-���� �-����

-��

����� 

この時の時間ステップ #�
�は、シミュレーションの時間ステップ#� とは独立であ

るため、必要に応じて細かくとることができる。�例：#�
�

$ #��� 
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第�章 粒子モデルシミュレーション
基本課題

本シミュレーションスクールでは実習課題を用意している。本来なら、宇宙空間ま
たはチャンバー装置内でしか再現できないようなプラズマ現象を計算機内でバー
チャルに実現することができ、その解析を自ら行うことにより、シミュレーション
の有用性について実感していただけると幸いである。特に、粒子モデルでは、ビー
ム�プラズマ不安定性および衝撃波現象に関する基本課題を用意しており、各受講
者はそれぞれの端末で基本課題に関するシミュレーションを実体験することがで
きる。これらの基本課題は、非常に古典的な問題であるにもかかわらず、それぞ
れの現象の時空間発展はプラズマパラメータに大きく依存する。このため、観測、
理論、シミュレーションを含めて現在でも非常にホットで最先端の研究テーマで
もある。自習時間では、基本課題を元にした応用課題に是非取り組んでいただき
たい。

��� 電磁粒子シミュレーションで解く課題

����� ビームプラズマ不安定性

近年、衛星を用いた地球磁気圏プラズマ波動観測により様々なプラズマ波動が
観測されている。これらのプラズマ波動の形成要因として考えられているもの１
つにビームプラズマ不安定性がある。ビームとは、背景プラズマに対して相対速
度を持ったイオンや電子の流れのことを示す。ビーム成分と背景プラズマとの相
互作用は非常に古典的な問題であり、理論的には ����年代から研究されてきてい
る。その後、計算機シミュレーションによりその線形過程および初期の非線形過
程について様々な研究が行われてきた。近年では、静電孤立波の衛星観測に伴い、
ビーム�プラズマ相互作用の非線形発展に関する計算機シミュレーション研究が注
目を浴びている。
このような研究背景の中、本基本課題では、特に不安定性の線形発展から非線

形過程にいたるプロセスに着目し、背景プラズマにビームとなる成分を加えたモ
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図 ���' 電子及びイオンの速度分布とビーム不安定性

デルを用いて、計算機シミュレーション実習を行う。実際のビームプラズマ不安
定性では背景プラズマとビームの熱速度、質量比、密度比またはビームの相対速
度などにその発展は大きく依存する。しかし基本的には電子�電子間、電子�イオン
間そしてイオン�イオン間での生じる不安定性の組み合わによりある程度理解する
ことができる。そこで今回、基本課題として、電子またはイオンのビームが１つ
だけ存在する場合に生じる電子�電子間、電子�イオン間そしてイオン�イオン間の
不安定性の特徴的な場合について計算機シミュレーションを行ってみる。

背景プラズマと電子ビーム

静止系において背景プラズマ �電子とイオン が存在し、加えてビーム電子が存
在する場合について考える。この時起りうる不安定性としては、�� 背景電子�ビー
ム電子間の電子二流体不安定性と �
 背景イオン�ビーム電子間の ��
���
不安
定性の２種類が考えられる。どちらの不安定性が支配的になるかは、各成分の熱
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速度、質量比、密度比またビームの相対速度などにより決まるが、本基本課題で
は背景電子の熱速度にのみ注目することにする。

	 3��� �� ' 背景電子の温度が低い場合 �電子二流体不安定性 

背景電子の温度が低い場合、背景電子�ビーム電子間の不安定性である電子
二流体不安定性が支配的である。電子二流対不安定性とは電子�電子間で相
対速度を持つ場合に生じる静電的な不安定性で、各電子が自らの運動エネル
ギーを電場に与えより安定した速度分布に落ち着こうとして生じる。背景電
子の温度が低い場合の代表的な速度分布を図に示す。図をみて分かるように
背景電子の他に背景イオンも存在するが、電子の方がイオンより軽く動きや
すいためにイオンより先にビーム電子と電子二流対不安定性を起し安定な状
態に落ち着こうとする。課題としては、線形分散解析を予め行いどのような
波数の波動が最も成長しやすいかを確認後、その波動を再現できるようなシ
ミュレーションシステム・パラメータを選択し実際にシミュレーションを行
う。シミュレーション結果を解析して、最大成長率をもつ波数、時間的な波
動成長率などを理論値と比較する。

	 3��� �
 ' 背景電子の温度が高い場合 ���
���
不安定性 

背景電子の温度が高い場合、電子二流体不安定性は小くなり背景イオン�ビー
ム電子間の ��
���
不安定性が支配的になる。��
���
不安定性とは電
子�イオン間で相対速度を持つ場合に生じる静電的な不安定性で、電流駆動
型 �3����
�����5�
 不安定とも言われる。基本的にはイオン音波モードから
静電波が成長するが、不安定性を起すイオンと電子の温度がその波の成長に
関係する。すなわち、イオン温度と電子温度より決まるイオン音速がイオン
の熱速度より小さい場合、イオンによるランダウ減衰が起り波の成長は妨げ
られる。背景電子の温度が高い場合の代表的な速度分布を図に示す。図をみ
て分かるように背景電子は熱速度が高く速度分布が広がっていて安定してい
るので背景電子�ビーム電子間の不安定性は小さい、しかし、背景イオンは
熱速度が小さく、系全体から見た場合、背景イオンとビーム電子は不安定な
状態にある。よって ��
���
不安定性が起こり安定な状態に落ち着こうと
する。

この場合についても前のケース同様の解析を行い、シミュレーション結果の
解析を行う。
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背景プラズマとイオンビーム

次に、静止系において背景プラズマとして電子とイオンが存在し、加えてビー
ムイオンが存在する場合について考える。この時は上に述べた��
���
不安定性
と背景イオン�ビームイオン間のイオン二流体不安定性の２種類が考えられる。こ
こでも背景電子の熱速度にのみ注目して、それぞれの不安定性が支配的になる２
つの場合について計算機シミュレーションを行ってみる。

	 3��� �� ' 背景電子の温度が低い場合 ���
���
不安定性 

背景電子の温度が低い場合、背景電子�ビームイオン間の��
���
不安定性
が支配的である。この時の代表的な速度分布を図に示す。この場合、系全体
で見た場合、背景電子&イオンそしてビームイオンのすべてが不安定な状態
にある。しかし電子はイオンより軽く動きやすいためよ早く安定な状態に移
行しやすい、よって、背景イオン�ビームイオン間の不安定性より背景電子�

ビームイオン間の��
���
不安定性の方が早く起こり安定な状態に落ち着
いてしまう。

この場合についても前のケース同様の解析を行い、シミュレーション結果の
解析を行う。

	 3��� �� ' 背景電子の温度が高い場合 �イオン二流体不安定性 

次に背景電子の温度が高い場合は、��
���
不安定性が弱まり背景イオン�

ビームイオン間の不安定性であるイオン二流体不安定性が支配的となる。イ
オン二流体不安定性とは、イオン�イオン間で相対速度を持つ場合に生じる
静電的な不安定性で、各イオンが自らの運動エネルギーを電場に与えより安
定した速度分布に落ち着こうとして起る不安定性である。この場合の代表的
な速度分布を図に示す。見て分かるように背景電子は熱速度が大きく速度分
布が広がっており、系全体見た場合ビームイオンと背景電子の不安定性は小
さい。よって背景イオンとビームイオン間のイオン二流体不安定性が一番強
くなる。イオン二流体不安定性は他の 
つの場合と違い両方イオンなので最
も成長率が小さく、波の成長に時間がかかり長い計算時間を要する。

��� ハイブリッドシミュレーションで解く課題
本スクールでは、ハイブリッド法で解析されるプラズマ現象として、イオン二

流体不安定性と !��� "��� の衝撃波を扱う。また、簡単のために空間１次元 ��

方向の変化のみ の仮定の基で行う。粒子の速度は３成分を扱う。
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図 ��
' イオン二流体不安定性に関する分散曲線。実線が周波数、破線が成長率を
表す。時間と長さは、それぞれプロトンのサイクロトロン角周波数 A� とプロトン
の慣性長 #
�A�で規格化してある。A� よりもゆっくりした波動で、成長率も静電
的波動に比べて小さい。

����� イオン二流体不安定性

背景イオンと電子が存在する系に、イオンビームが加わる場合を考える。先の
粒子コードによって解析した静電的な波動の励起に加え、図 ��
の分散関係に見ら
れるような、電磁的な波動も励起される。しかし、この電磁的な波動は、静電的な
波動に比べ波の成長率が極端に小さいため、粒子コードを長時間走らさなければ
ならない。昨今のコンピューターの能力では、この長時間の計算を行うことは可
能だが、この現象がイオンの時間スケールで生じる現象と分かっているため、ハ
イブリッドコードで解析することが可能であり、また短時間で行える。宇宙空間
でこのような現象が人工衛星によって直接観測される場所としては、地球の定在
衝撃波 ���, -��)9 近傍や、地球磁気圏尾部のプラズマシート境界などがある。
そこでは、背景プラズマに対し、磁力線に沿った方向にイオンピームが流れてい
る現象が観測され、同時に電磁的な波動も観測されている。

問題

�� 分散曲線の図で、
 . � の波 �共鳴波と呼ばれる の方が、
 / � の波 �非共
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図 ���' 波が成長してきた時点での、� � # � 位相空間図 �左上 、磁場の垂直２成
分の空間変化図 �左下 とそのスペクトル図 �右 。空間的に左周りの波が励起され
ている。

鳴波 より成長率が大きいが、どのような時に逆転するかB

�
 ビームの速度や密度を変えて行くと、励起される波のモードがどのように変
化するかB

�� テスト粒子計算の時に行った位相捕捉現象が見られるだろうかB

����� ���� 	
�� 衝撃波

衝撃波面での散逸現象

粒子間の衝突が無視できる宇宙空間においては、衝撃波の存在は自明ではない。
なぜなら、衝撃波面での散逸現象が粒子間の衝突に起因しないからである。如何
にして、運動エネルギーが熱エネルギーに変換されているのであろうか。その散
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図 ���' 人工衛星によって観測された衝撃波の例 �左：磁場強度 とハイブリッド法
で計算された衝撃波 �右上：磁場強度、右下：位相空間図 。

逸の様子を、シミュレーションで理解することを目標とする。
問題

�� ��
9�
��:���
��� の関係式を使って、下流での熱量を求める。

�
 衝撃波の法線方向 �� 軸 と磁場の成す角 �-��)9 角 を変えることにより衝
撃波の性質が変わることを確認する。

�� 衝撃波面から、上流方向へ移動する粒子があることを確認する。

�� -��)9 角が小さいとき �/ �	度 、上流で、イオン二流体不安定性が見られ
ることを確認する。

衝撃波面での加速現象

衝撃波は、また、プラズマ粒子の加速器として働くことが良く知られている。し
かし、全ての粒子を加速しているわけではない。加速される粒子とされない粒子
は、何が違うのであろうか。



�� 第 �章 粒子モデルシミュレーション基本課題

図 ��	' 準平行衝撃波で、上流からやって来た粒子が衝撃波面で止められ加速され
て行く様子を示す �ハイブリッド法による計算結果から 。▲点は、
 A� 時間毎に
打ってある。
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粒子モデルの基本実習課題に関連する参考図書も以下にあげる。
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付 録� クーラン条件

"�+,���方程式を空間的に中心差分、時間的にリープフロッグで解き進めるには、
上述にあるように格子間隔#�と時間ステップ#�が以下の関係を満足する必要が
ある。

#� . �#� �4�� 

ここで �は光速である。これをクーラン条件という。このクーラン条件は光速波動
の数値分散関係から簡単に導かれる。今、0��	 � を波数 
周波数 1を持つ波の成
分と仮定する。

0��	 � $ 0� �+.��
�� �1� �4�
 

空間的な中心差分を考えると
#0

#�
$

0��� % #��
	 � � 0��� �#��
	 � 

#�
�4�� 

$
�+.��9#+�
 � �+.���9#+�
 

#�
0���	 � �4�� 

$ �
��
�9#+�
 

#��

0���	 � �4�	 

この#0�#� を空間変微分 �0��� と比較すると、波数 
は以下のように変数�

に置き換えて考えることができる。

� $
��
�9#+�
 

#��

�4�� 

同じように周波数 1についても変数Aに以下のように置き換えることができる。

A $
��
�1#��
 

#��

�4�� 

光速モードの波動分散関係は 1� $ ��
�であり、
と 1を上の�とAで置き換
えるとA� $ ����となる。最大波数 
��� $  �#�を考えた場合、

��
��1#��
 $ �
)#�

#+
 � �4�� 

という関係が得られる。もし �#��#� / �なら、1は複素数となり数値不安定を
示す。このため、最初に示したクーラン条件が満たされてないといけないことに
なる。�#��#� $ �の場合、臨界安定である。
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付 録� マクスウェル分布を与える
方法

ここでは、� / � / � の一様乱数から、ガウス乱数を生成する方法の一例を述べ
る。粒子シミュレーションでは、初期の粒子の速度分布をマクスウェル分布で与
えることが多いためである。
一様乱数 �

2�� �� $

�
�� � / � / �

� �����
���� 

を任意の関数で 3�� に変換した場合、3�� の確立密度 % �3 は、


% �3 �3
 $ 
2�� ��
 ���
 

となり、

% �3 $ 2�� 

					���3
					 ���� 

と求まる。これを、２次元に拡張すれば、

% �3�	 3� �3��3� $ 2���	 �� 

					����	 �� ��3�	 3� 

					 �3��3� ���� 

となる。
� � �
 は、�の 3 についてのヤコビアンである。
もし、% �3 がガウス分布を表す確立密度関数になれば、目的が達成される。
２次元のガウス分布は、

��� $
�

 ���� �+.����� % ���

����  ���	 

であるから、式 ���� のヤコビアンが、					����	 �� ��3�	 3� 

					 $
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����  
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となる変換関数があれば良い。
それは、

3� $ #� $ ���
�
� �
��� )���
 �� ���� 

3� $ #� $ ���
�
� �
��� ��
�
 �� ���� 

である。よって、２つの ��	 � の範囲の一様乱数 ��、�� が求まれば、式 ����&��� 

の変換により、１組の２次元ガウス分布が求まる。



プラズマ線形分散関係ソルバー ������について

羽田 　亨 ���、白石岳雄 ���、関 　光弘 ���

��九州大学大学院総合理工学研究院流体環境理工学専攻
��九州大学大学院総合理工学府大気海洋環境システム学専攻

������ �	
 �		�

要旨：無衝突プラズマ中のプラズマ波動の線形分散関係を数値計算するプログラム ������の使
用方法および計算の背景となる理論の概要について紹介する。このプログラムでは、プラズマに
関する各種パラメータ（分布関数、イオン種数など）と波数ベクトル（の組）を入力することに
より、対話型操作を通して、複素角周波数（実角周波数および線形成長率）、波動の偏波指数、波
動が電磁的�静電的かを表す指数、などの出力を得ることができる。プラズマ分布関数は、ドリフ
ト速度を持ち得るマックスウェル分布の重ね合わせとして表現する。操作の実例を、いくつかの
例題を用いて解説する。なお、ここで紹介するプログラムは、「宇宙シミュレーション・ネットラ
ボラトリーシステム開発」（科学技術振興事業団）の一部として整備が行われているものの簡約化
されたバージョンである。

� はじめに

宇宙・天体で起きている様々な興味深い現象を議論する際、これらの環境を満たす媒質である

無衝突プラズマ中に、どの様な性質をもつどのような線形波動が存在し得るかを知る、つまり線

形分散関係を得る、ことは極めて重要な意味を持つ。これは、議論の対象が宇宙・天体プラズマ

波動である場合には勿論のこと、それ以外の場合でも、例えば衝撃波、磁気再結合過程、といっ

た一見、線形波動とは関係のなさそうなダイナミックな物理現象においても、その核心的部分で

（異常）散逸をまかなっているのがプラズマ波動を媒介とした効果的な粒子拡散であるように、数

多くの宇宙・天体現象において、プラズマ波動が本質的な役割を果たしているからである。さら

に一般的な立場から見ても、ある物理系の性質を理解するためには、まずその定常状態を議論し、

その上で系の微少擾乱に対する反応（線形応答）を求めるのが筋道であるが、これは媒質中の線

形波動を求めることに他ならない。

この様に無衝突プラズマ中の線形分散関係を計算する機会は、宇宙・天体プラズマの研究に携

わっている限り、かなり頻繁にあるものと思う。しかしその一方、他の数値計算コードの場合と同

�



様、線形分散関係を計算するプログラム（線形分散関係ソルバー）の汎用バージョンは、少なくと

も筆者達の知る限りにおいては、手軽に使える形では世の中に出回っていないようである（実際、

過去数年の間に筆者らが複数の研究グループから、我々の使用している線形分散関係ソルバーを

使いたいとの依頼があった）。大きな研究組織では、計算機ライブラリーの一部としてプログラム

が整備されているところも多くあるのだろうが、宇宙・天体研究者の多くがそうであるように、ス

タッフ数が数人程度の小さな研究グループでは、むしろ小回りのきくプラグラムの方が使い勝手

がよいであろう。本稿で紹介するプログラム ������は、分散関係ソルバーのなかでは必要最小

限の機能のみを備える基本的なものだが、今回のワークショップのように、とりあえず数値シミュ

レーションの結果と照合したい、というような目的には、十分役にたつはずである。また、必要

に応じて新しい問題に適応できるよう、プログラムに修正・変更を逐次加えていくことも可能であ

る（利用者からのフィードバックを期待したい）。以下、必要最低限の計算の背景の説明に続き、

与えられた条件のプラズマの中に存在する波動の線形分散関係を、具体的な題材を例にとって説

明する。

� 計算の背景

ここでは、各種物理量の定義と物理的意味を明確にすることも兼ねて、������を使用する際に

必要と思われる最低限の理論的なバックグラウンドとして、線形分散関係式を求める過程をごく

簡単に振り返っておく。詳細は多くのプラズマ物理の教科書に解説してある（例えば ���� ���� ���）

のでこれらを参照してほしい。

��� 線形分散関係の導出

プラズマ波動の線形分散関係式を導くために使用する式は、ヴラソフ方程式

���
��

� � � ��� �
��
��

	��
�

�
� ��
 �

���
��

� � 	�


およびマックスウェルの方程式
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�

��

��
�
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�
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��
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である。ここに、��	���� �
はプラズマの分布関数、�は粒子種、その他の記号は標準的なもので

ある。単位系はガウス単位系を用いている。

３次元空間内に一様にひろがるプラズマを考え（０次量）、ここに微少擾乱（１次量）を与える。

２次以降のオーダー量は無視できると仮定し（線形近似）、さらに１次の擾乱を、空間・時間に関



してフーリエ変換する（�
�� � ���、� � ��）。ここに、� � �� � ��は波動の複素角周波数、

��は実角周波数、�は線形成長率（正が不安定）、�は波数ベクトルである。

これらの操作により、マックスウェルの方程式 	��
と 	��
は、屈折率ベクトル � � ��
�を用

いて

�� 	����
 ��� � �

��

�
�� 	



と書ける。ただし磁場の摂動は、�� � ���� によって電場の摂動と関係づけられている。式 	



の右辺、つまり電流が、電場��の関数として書ければ式は閉じ、分散関係式が得られる。（	

を

導くにあたって 	��
�	��
を使わなくてすんだのは、� �� �の波動を考える場合には、	��
、	��


と電荷保存の式が 	��
と 	��
を含んでいるからである。� � �の波動（構造）を考える場合には

注意が必要である（例えば エントロピー波）。）

一方、ヴラソフ方程式を線形化し、分布関数の１次の摂動を粒子の軌道に沿った積分としてあ

らわすと

��� �
���
��

� �

��
	�� �

�

�
�� 	����

 �

����
��

�� 	�


となるが、この積分を実行するためには、ゼロ次オーダーでの粒子の軌道を指定する必要がある。

一様・定常な磁場のもとでは、粒子はスパイラル軌道をとるから、これを用いて実際に 	�
を評

価することができる（ランダウの積分）。それ以外の軌道の場合にでも ���が計算できる場合があ

る。また数値的には、一般的なゼロ次オーダー軌道に対して 	�
の積分が計算でき、例えばニュー

トラルシート近傍でのテアリング不安定性の解析に応用されている）。

分布関数の１次摂動がわかれば、電流の１次摂動は

�� �
�
�

��

�
����� � � � �� 	�


により求められる。ここに � は電気伝導度テンソルである。線形波動に対するプラズマの効果は、

すべてこの � の中に集約されている。実際、	�
を（フーリエ空間でなく）実空間で書けば、与

えられた摂動電場に対する、非局所的かつ時間の遅れをともなうプラズマの線形応答が摂動電流

を作ることを示す畳み込み積分となり、直感的である。プラズマの応答 	�
を用いて 	

を書き直

せば、

� � �� � �� 	����
 � 	� �

��

�
�
�� � � 	�


となり、これが ��に関して自明でない解を持つ条件、

���	�
 � �	���
 � � 	�


が線形分散関係である。ここに、�は線形分散関係テンソルであり、また 	�
にあらわれる � �

� � 
���
� を誘電率テンソルと呼ぶ。



��� ０次の分布関数

線形分散関係を解くためには、プラズマの０次の分布関数を指定する必要がある。人工衛星に

よって観測された分布関数や、数値実験により得られた分布関数は、任意の形をしているが、こ

れを 	�
 の積分が評価しやすい関数の重ね合わせとして表わすのが、分布関数の標準的な表現方

法である。������では分布関数を、ドリフトと温度異方性を持つマックスウェル分布の重ね合わ

せとして書く。
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ここに、��� は密度、
��
� � ��
�� と 
��

� � ��
��は磁力線に平行および垂直方向の熱速度

の２乗、��� は沿磁力線方向のドリフト速度である。マックスウェル分布の線形重ね合わせとして

０次分布関数を表現することの利点は、性質がよくわかっていて数値計算の比較的容易な「プラ

ズマ分散関数」を用いて線形分散関係を評価することができるからである。

上式の温度が低い場合の極限として、冷たいプラズマの分布関数、

����� �
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Æ	�� � ��
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および、冷たいリング分布、

����� �
���

���
Æ	�� � ���
Æ	�� � ���

 	��


も扱うことができる 	但し、夏の学校バージョンではサポートしていない）。

��� 計算出力

入力パラメータを与え、与えられた波数ベクトル �に対して線形分散関係 	�
 を解けば、解と

して �が得られ、実周波数および線形成長率が求められる。一方、ひとたび �が求められると、

	�
の固有ベクトルとして、��（の方向）が定まるが、これを用いて波動の固有の性質をあらわ

す物理量を計算することができる。

いま、一般性を失うことなく、磁場の０次成分が �軸に平行であり、�が �� �平面に含まれる

ように座標系をとり、求められた ��から以下の量を評価する。

� 偏波 	����������� 
： � � �����
����

� 電磁静電指数 	!"�!# � ���
 ： � � 	� � ��
����	

偏波はその定義からわかるように、��の回転の向きを表している。磁力線のまわりを、電子と

同じ向きにまわるか、陽子と同じ向きにまわるか、をそれぞれ「右回り」および「左回り」と定

義する。ここで「まわる」と言っているのは、ある空間上の点で観測したベクトルが時間的にど



のように回転するか、のことである。（一方、例えば真空中の光の伝搬に対しては、電子も陽子も

関与しないから磁力線の方向に対して定義するのは無意味であるため、波動の伝搬方向に対する

電場の回転方向（波動が進むにつれて右ネジの方向に電場が回転するか、あるいは左ネジの方向

か）で定義することが普通である）。

また、電磁静電指数を、上の様に定義した。定義の分子および分母をそれぞれゼロとした場合

が、純粋な電磁波（� 
 ��）および純粋な静電波（� � ��）に対応している。したがって、波動

が静電的（例えば音波、プラズマ振動）なほど �は１を越えて大きな値をとり、波動が電磁的で

あるほど（例えば平行伝搬アルフヴェン波）�は �に近い値をとる。なお静電波の場合、磁場摂動

は �� � ���� � �であり、また線形分散関係式 	�
 は、� ��� � � と書ける。さらに � � �� を

もちいてこれを書き直すと静電波の線形分散関係、�	
	���
 � � � � � � � �が得られる。このスカ

ラー方程式は 	�
 の一部分であり、したがって ������にも含まれている。

� 計算の手順

��� 計算手順の概略

与えられたプラズマ条件のもとでの線形分散関係を求めるためには、以下の手続きを踏む。

	
�� 
� プラズマのパラメータ指定

プラズマに関する情報を粒子種ごとに、分布関数をマックスウェル分布 	��
 で表現する際のパ

ラメータの組（密度、ドリフト速度など）として与え、また磁場の強さをプラズマ周波数とサイ

クロトロン周波数の比として与える。これにより、線形分散関係 	�
 の具体的な表式が決まる。

	
�� �� シード解の探索

与えられた波数ベクトル �に対して、これを満たす �を見つけることが目標であるが、線形分

散関係 	�
 は �に関して著しく非線形なので、解を見つけるための一般的な方法は存在しない。

本プログラムでは、期待される解が存在する領域を指定し、�	���
の「地図」を描く、あるいは

この領域内でのトライアル・アンド・エラーによる方法により、まずシード解（波数の組に対して

解を求めていくための元になる解）を見つける。

	
�� �� 分散関係を求める

シード解が見つかれば、それを起点として外挿を繰り返すことにより、�と �の組を比較的効

率よく求めていくことができる。この際、偏波、電磁静電指数、計算誤差も評価する。

以下、実際に ������を走らせながら、各手続きを解説する。



��� ���� �� プラズマのパラメータ指定

プラズマのパラメータは、データセットを作成し、その中で  �$���%�文を用いて指定する。例

えば、データセット ����� を以下のように作る。

��� �����
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�� � 
�

	� � �����������

�� � ����������� ����������� �����������
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�����
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��� � ����������� ����������� �����������

��� � ����������� ����������� �����������


� � ����������� ����������� �����������

����

ここでは、電子、プロトン、およびプロトンのビームから構成されるプラズマを考えている。使

われているパラメータは、以下の通りである。

　　　変数 � 意味 　　　　　　　　　　　　規格化

　　　�� � マックスウェル分布の数 　���

　　　	� � 規格化定数 ���

　　　���� � 数密度 ���� の総和��

　　　���� � 電荷 素電荷 � �

　　　���� � 質量 電子 � �

　　　����� � 平行熱速度 � ! �"���	� 

����� � 垂直熱速度 � ! �"���	� 

　　　
��� � ドリフト速度 � ! �"���	� 

上の例では、プラズマは３つのマックスウェル分布の重ね合わせ（プロトン、電子、プロトン

ビーム）として表現しているので、����である。��は ��以下とする。分布数 ��と、規格化定数

	�（詳細は後述）のあとにならんでいるのが、各マックスウェル分布（添字 �で表すことにする）

を特徴づけるパラメータ群である。数密度 ���� は、�についての総和が１となるように指定す

る。電荷 ���� は、例えば陽子ならば �、電子ならば&�である。これらの２つに対して、プラズ

マの中性条件、つまり ���� #���� の総和が０となるようにする。但し、パラメータ入力時の



数値誤差のため、この値が厳密に０になるとは限らないので、プログラム内部で、最も数密度の

大きい粒子種の数密度を調整することで、中性条件を満たすようにしている。質量 ���� は、電

子を � とし、（現実の）陽子ならば ����、あるいは計算機実験で使った値を指定すればよい。平

行熱速度 ����� 、垂直熱速度 ����� 、およびドリフト速度 
��� は、	��
で定義している。

	変数の規格化について

線形分散関係の計算に限らず、計算はなるべく無次元量を用いて行った方が効率も、見通しもよ

い。しかし、プログラムにデータを渡す際に、少なくとも周波数と速度（つまり時間と空間）をど

のように規格化しているか、を指定する必要がある。例えば、時間は必ず電子のサイクロトロン

角周波数、速度は光速を用いる、と決めておけば簡単であるが、実際にはプロトンの時間スケー

ルやＭＨＤ波動の速度スケールなど、指定するパラメータの値が余りに大きくなったり小さくなっ

たりすることを避けるために、������では以下のように変数の規格化を行っている。

・時間は、データを入力する際の、マックスウェル分布の初めの列の粒子種のサイクロトロン角

周波数を基準として、これを用いて規格化する。以下、これを '�とする。

・空間は、考えている問題に都合のよい任意の長さを基準とする。これを ��とする。

・上の２つにより、速度スケールは、��'�で規格化される。

・規格化定数 $% � ��
��
�'

�
� と指定する。

例えば、'�としてプロトンのサイクロトロン角周波数 '� を選び、��として ��
'�（��はア

ルフヴェン速度）を選ぶと、$% の値は

��

� �
�

�
��
�

'�
�

	� � �
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となり 	�� はプロトンプラズマ角周波数、� � �	
��はプロトンと電子の質量比）、また、'�と

して電子のサイクロトロン角周波数 '	、��として電子の慣性長 �
�	 を選ぶと、�( の値は

��

��
�'

�
	

�
��
	

'�
	

	��


となる。実際には、考えている現象がＭＨＤスケールに近いか、電子スケールに近いかを見極め

て、上の２つのどちらかを選んでおけば良い。

上の入力データを用いて、実際にプログラムを走らせてみる。端末から、

�!������&��'�

と入力すると（プログラム名は変更になっている可能性あり）、



(��	 �� )�	
� 	����� 	���������

)�	
� �*� ������� ����

と聞いてくるので、先ほどのデータセット名

�����

を入力する。すると、以下の表が表示されるはずである。
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一番上の行は、中性条件に合うように、数密度の調整を（表示されていない桁に対して）行った

結果である。以下、入力されたパラメータのエコーが続き、最後の４行は、サイクロトロン角周

波数、プラズマ角周波数、平行、垂直方向のベータ値、およびラーマ半径である。

��� ���� �� シード解の探索

前節までで、分散方程式 	�
の具体的な関数が定まったので、次にこれを、与えられた �に対し

て解かなければならない。前に述べたように、まずシード解をもとめ、これをもとにして外挿に

より 	�� �
の組を計算していく方法をとる。



分散方程式 	�
は、実際には次の２つの式からなる連立方程式である。

��	���
 � � ) ��	���
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ここに、��、��はそれぞれ �の実数部、虚数部である。解を確実に探すためには、�複素平面

上で、�� � � の曲線と �� � �の曲線を描き、これらの交点を求めればよい。同じことであるが、

��と ��のそれぞれの正負に応じて、�平面を４通りに「色分け」し、４色が集まるところを探

してもよい。関数�が � に関して正則であること（例えば 	�	 は � に含まれない）等の性質を

うまく利用して、シード解を効率よく見つけることができる。（夏の学校バージョンでは、この機

能は省略している）

しかし、高速の計算機が身近に使える今日では、上の方法よりもむしろトライアル・アンド・エ

ラー（もぐらたたき）によって、力まかせでシード解を探すほうが効率がよいようである。これ

は、解があると推測される � の領域内のランダムに選んだ点を起点として、逐次近似（ニュート

ン法など）により、点を移動させ、解に収束させる、というものである。多くの場合、点は領域

内にとどまらず、遠くに発散してしまうが、シード解に収束する場合もある。以下、例の続きを

示す。

(��	 �� /��� ���� �..�

)�	
� +33��+�2� �
���� ��� +�*��	�.	 ��1�� 

�����

シード解を見つける際の、波数ベクトルを入力している。*++は波数の絶対値 		�	 �  
、*�,は

� と定磁場とのなす角度 	!
で、単位は度である。
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���0 �.���� /.� �*� ���� �..���
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シード解を探す � � ��� �� の領域を、�����.� " �� " �����.� 、���1�.� " � " ���1�.� 

と指定している。

注意： ���1�.� 、���1�.� を負で、とても小さい値にすると、強減衰モードが多数現れ、計算

が困難になることがある（プラズマ粒子の数だけ波動モードの自由度もある！）。

多少の時間経過の後、シード解が表示される。
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上の例では、１０個のシード解が見つかった。表の左側より、根の番号、根の実・虚部、計算誤

差 	�	�	���
	
 である（右の２つはイテレーションに関連した情報を与えている）。これらのシー

ド解をざっと見ると、根番号��が � # � の不安定モード、また根番号��と �が減衰率の小さな

モードを与えていることがわかる。

��
 ���� �� 分散関係を求める

上に引き続いて、正の成長率を持つ７番目の根について、分散関係を求めることにしよう。
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������では、分散関係としては、	�
 !を固定しておき、 を変化させる、	�
  を固定しておき、

! を変化させる、の２つの計算をするようになっている。上の例では、まず 	�
 を選択する。



次に、先のステップで求めたシード解の表の中の、どの解について計算を行うか、を指定する。

今の場合 � を入力する。

最後に、変化させる  の範囲（+33�"  "+33�）と、計算する回数（�33）を指定する。

すると、結果が出力される（印刷できるように有効数字をおとして表示している）。
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（以下省略）

左から順に、番号、 、!、��、�、誤差 		�	
、偏波指数（�-�章参照）、電磁静電指数（�-�章参

照）、イテレーション数、である。計算結果は、データセット./��0&+-���.に保存される。

次に、伝搬角 ! に対する依存性を調べよう。

(��	 
� �.�	
����.� �.�� 4

�� 2��0 3� /�' �*��� ! �� /�' 3� 2�� �*���

�� ���3 �. 	��2�.
� ���	 ! ���� ���

�

3�0 �� �*� �..� �
���� /.� ������1

&

)�	
� +�*�� +�*�� ��*

��������

� ������ ������ ������ ������ ������ ������ ������ �

� ������ ��
��� ������ ������ ������ ������ ������ 



 ������ ������ ������ ������ ������ ������ ���
�� 


� ������ 
�&�&� ������ ������ ������ �����& ������ 


� ������ ������ ������ ������ ������ ������ ������ 


� ������ ������ �����& ������ ������ �����
 ���&&� 


& ������ &��
�� ������ ������ ������ ����

 ������ 




今度は、	�
を選び、同じ解 	��
を選択し、そして伝搬角の範囲（+�*�" ! "+�*�）と計算数（��*）

を指定すると、先ほどと同様に結果の表が出力され、また計算結果はデータセット./��0&�,-���.に

保存される。
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図 �1 計算結果のグラフ。上段は  に対する依存性（! � �$�）、下段は !に対する依存性 	 � �$�
、

また左側と右側にそれぞれ複素角周波数、偏波指数と電磁静電指数をプロットしている。

� 終わりに：���公開版との相違

ここで紹介したプログラムは、「宇宙シミュレーション・ネットラボラトリーシステム開発」（科

学技術振興事業団）の一部として2!3上での公開を目指して整備が行われているものを、今回

の宇宙・天体プラズマ夏の学校での使用のために準備したバージョンである。2!3公開バージョ

ンには、ここで紹介した機能の他に以下の項目を追加する予定である。

・マックスウェル分布以外に、冷たいプラズマ、リング・プラズマなどの分布関数の指定。



・トライアル・アンド・エラーによる方法に加え、複素角周波数平面でのマップを描いて効率よ

くシード解を見つけるルーチン。

・2!3ページ上での入出力。

・特に、2!3上で、結果のグラフ出力。

その他、機能の強化、使い勝手の向上をはかっていきたいと考えている。ご意見、ご要望、そ

の他何でも感じたことがあれば、ご連絡いただきたい。
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1 はじめに

1.1 POMの背景

POM (Plasma particle simulation code via Object oriented Methodorogy）は、オブジェクト
指向開発設計技法により開発されたプラズマ粒子シミュレーションコードです [1]。2000年より、
愛媛大学工学部情報工学科を中心として、国立極地研究所、京都大学宙空電波科学研究センター、
宇宙開発事業団などのプラズマ粒子コード研究者が集まって、研究開発を進めています。

PocketPOMは、POMのサブセットのひとつとして、WindowsOS上で動作する POMコードと
して開発されてきました。Pocket（気軽に）使える電卓的プラズマ粒子コードとして、小規模な計
算に利用されるツールです。近年のパーソナルコンピュータ（PC）の高速化に伴い、PocketPOM
の計算処理速度は、簡単な計算を行うためだけであれば、十分実用に耐えるものになりました。

1.2 PocketPOMの構成

PocketPOMは、1.4で示すように、

• PocketPOM 1D

• PocketPOM 2D

の異なるバージョンが、独立に開発されています。本手引きでは、PocketPOM 1Dについて説明
します。

1.3 PocketPOMで用いられているリソースと動作環境

PocketPOMは、開発環境としてMicrosoft社の Visual Studioバージョン 6 、データ表示ライ
ブラリとして Quinn-Curtis社 [2]の GCLライブラリ [3]が用いられています1。
動作環境としては、Windows98 SE、Windows2000、WindowsXP Professionalでの動作を確認

しています。その他のWindowsOSでも動作すると思われます。
ハードウエア用件は、特にありません。しかし、多数のプラズマ粒子の運動を処理する場合に

は、CPU、主記憶容量などは、高速・大容量であることが望まれます。

1.4 PocketPOMの背景と開発履歴

PocketPOM 1Dは、2001年より、愛媛大学工学部情報工学科応用情報工学講座において開発さ
れてきました。PocketPOM 1Dは、京都大学宙空電波科学研究センターで開発されてきたKEMPO
コード（Kyoto university ElectroMagnetic Particle cOde）をオブジェクト指向により再設計・実
装した POMコード [1]をベースにしています。

PocketPOM 2Dは、2001年より開発が始まり、現在に至ります。PocketPOM 2Dは、シミュ
レーションコードとしてよりも、シミュレーション結果の解析環境としての開発が先行していま
す。2002年 8月現在、シミュレーション機能と解析機能の融合を目指して、研究開発が進められて
います [4]。PocketPOM 2Dは、上記の KEMPOコードと、同じく京都大学宙空電波科学研究セ
ンターで開発されてきたハイブリッドコードとの融合を目指しています。特に、ハイブリッドコー
ドは、並列化による高速計算が実現されており [5]、並列化オブジェクト指向ハイブリッドコード
の PocketPOMへの導入も進められています。

PocketPOMは、Windowsという個人向け環境での開発ですが、それと平行して、WWW上か
らプラズマ粒子シミュレーションを行う問題解決環境の研究 [6]も、愛媛大学工学部情報工学科応
用情報工学講座において進められています。

1.5 PocketPOM共同開発について

POMプロジェクトでは、共同研究者・共同開発者（学生でもかまいません）を随時募集して
います。シミュレーションコード開発、オブジェクト指向設計開発、ビジュアルプログラミング、

1なお、これらは、今後の開発において、変更の可能性があります。
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図 1: PocketPOM 1D展開ファイル

図 2: PocketPOM 1D メインダイアログ

ネットワークシステム構築など、興味のある分野でのご参加をお待ちしています。愛媛大学工学部
情報工学科の村田まで、電子メールでご連絡ください [7]。

POMについての情報は、POMホームページ [8]で公開しています。また、POM開発の情報交
換は、POMメーリングリスト [9]で行っています。

1.6 PocketPOM 1D version1.0の再配布について

PocketPOM 1D version 1.0は、科学技術振興事業団 計算科学技術活用型特定研究開発推進事
業での成果です。著作権等については、本事業の規則に準じます。また、PocketPOM 1Dの実行
ファイル、DLLファイル、マニュアルについては、その際配布を禁じます。

2 PocketPOM 1Dの使い方

2.1 実行準備

PocketPOM 1Dの動作環境は、1.3に述べたとおりです。PocketPOM 1Dは、自己解凍形式になっ
ており、展開すると PocketPOM.exeと、複数のDLLファイル（MFC42D.DLL, MFCO42D.DLL,
MSVCIRTD.DLL, MSVCRTD.DLL, Wct32dr3.dll, Wct32fr3.dll, WRT32DR3.DLL）が解凍さ
れます。PocketPOM.exe を、これらの DLL とおなじフォルダ（ディレクトリ）で実行すると、
PocketPOM 1Dが起動します。
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図 3: パラメータ設定

2.2 メインダイアログ

図 2は、PocketPOM 1Dを起動したメインウインドウです。メニューには、POMと HELPだけ
が表示されます。PocketPOM 1Dの実行には、図 2で示すように、メインダイアログのメニュー
から POM⇒JOBを選択します。

2.3 パラメータ設定

2.3.1 基本パラメータ

次に、パラメータダイアログが開きますので、シミュレーションを行うパラメータを選択しま
す。PocketPOM 1D version 1.0では、2種類の粒子のみを取り扱うことができます2。

ParameterSetボックスでは、nxでグリッド数、dxでグリッド幅、dtで時間ステップ幅、cvで
光速、wcで電子サイクロトロン周波数を設定します。

Particle0では、1番目の粒子のパラメータを設定します。npは粒子数、vpaは磁場平行方向
の熱速度、vpeは磁場垂直方向の熱速度、vdは磁場並行方向のドリフト速度、wpはプラズマ周波
数、qmは電荷と質量の比を与えます。Particle1では、同様のパラメータを、2番目の粒子に対
して与えます。なお、Job nameには何も入れる必要はありません。

2.3.2 境界条件

External Sourceでは、外部境界条件を設定します。チェックを入れることにより、OPEN境
界条件を実現することができます。（チェックがない場合は、周期境界条件が採用されています。）
POMコードは、オブジェクト指向により設計されているため、境界条件の変更を容易に行うこと
ができます [1]。OPEN境界に設定にした場合には、領域中央において、z方向の電流 Jz を励振す
ることができます。wp00は励振周波数、Jzは（最大）振幅を表します。

2.4 ジョブ実行

図 3で OKを選択すると、シミュレーション計算が始まります。同時に、グラフウインドウ（図 4）
が開きます。グラフウインドウには、x方向の電場 3成分（Ex, Ey, Ez）の空間分布、粒子の速度
位相図（vx, vy, vz）、エネルギー図が表示されます。
速度位相図では、一番目の粒子が赤色で、二番目の粒子が青色で表示されます。

2将来のバージョンでは、任意の種類の粒子を取り扱えるようにする予定です。
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図 4: PocketPOM 1D実行画面（時刻 t =0）

エネルギー図は、4種類のエネルギーが時間表示されています。赤は全エネルギー、青は電磁場
のエネルギー、黒が粒子の全ドリフトエネルギー、緑が粒子の全熱エネルギーです。3

図 4、図 5は、それぞれ、時刻 t =0.00、1.00、2.25のプロットです。エネルギー表示は、時刻
t =2.00以上になると、0に戻って、上書き表示します。なお、PocketPOM 1D version 1.0では、
物理パラメータ描画は、毎ステップ行われます。

2.5 グラフ編集

PocketPOM 1Dでは、グラフィックライブラリとして、GCL[3]を使っています。GCLは、グ
ラフ表示をインタラクティブに行うための、さまざまな機能を備えています。
図 6(a)は、線グラフ表示の変更ダイアログです。Ex などの線グラフの線上でマウスをダブル

クリックすると開きます。Typeで、線表示タイプを、線のみ、線とシンボルなどから選択できま
す。LINE ATTRIBUTEで線表示タイプを実線，破線などから選択できます。その他、スプライン関
数によるスムージング表示なども可能です。Dataにより、その時刻のデータを表示・保存するこ
ともできます。
図 6(b)は、粒子などの点プロット表示の変更ダイアログです。点プロット上でダブルクリック

すると、ダイアログが開きます。Typeで、点表示タイプを、点のみ、棒表示などから選択できま
す。Marker Attributeでは、点の形状（Sphere）、点のサイズ（Size）、点の色（Color）、点の

3同期境界条件の場合には、全エネルギー（赤線）が保存されることを確認して下さい。
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図 5: PocketPOM 1D実行画面：（左）時刻 t =1.0、（右）時刻 t =2.25）

スタイル（Style）などを変更することができます。
図 6(c)は、軸表示変更ダイアログです。xまたは yの座標軸上でダブルクリックすると開きま

す。座標の最大値（Fromと To）の変更、軸線表示の変更（LINE ATTRIBUTE）、ティックマークの
変更（Ticks）、グリッド表示の変更（Grids）、ログスケール表示（Logarithmic Scale）などが
行えます。
そのほかにも、数値や文字上でダブルクリックすることにより、フォント、文字色、文字サイズ

などを変更するダイアログが開きます（たとえば図 6(d)）。
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(a) (b)

(c) (d)

図 6: グラフ表示編集：(a)線表示の変更、(b)点表示の変更、(c)軸表示の変更、(d)フォ
ントの変更
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大規模粒子シミュレーションから見える新しい物理 
篠原 育（宇宙科学研究所） 

 
現在の国産のスーパーコンピュータの性能は、アカデミックな用途に使える計算機に限定すると

間違いなく世界最高水準にあります。今後もこのような恵まれた状況が続くかどうかは自明ではあ

りませんが、現時点ではこの状況を最大限活かす努力をすべきであることは間違いありません。こ

こでは計算機能力を活かした大規模計算をどのような方向性で進めるのかについて、１つの可能性

を紹介したいと思います。最近のシミュレーション研究からは、世界最大規模の大規模数値計算を

実行することによって、宇宙プラズマの基礎物理に対して新しい描像が発信されつつあります。最

先端の計算機は、従来の“理論や観測の追認”的なシミュレーションを超えて、新しい理解の仕方を
提示し得る能力を持ち始めた、と私たちは考えています。 
 
1. 大規模計算とはいっても… 
無衝突プラズマの物理を、電子の運動論的効果まで含んで計算を行う場合、私たちは粒子法を選

択する必要があります。ここではより現実の世界を理解するために、粒子計算であっても電子スケ

ールの現象だけではなく、イオンスケールまでを含んだ計算を行えることが目標です。これまでの

計算ではできなかった、電子スケールの現象がイオンスケールの現象とどのようにお互いに影響を

及ぼしあう／あわない、のかを知りたいからです。現実の宇宙プラズマの物理を理解するために、

実パラメータで粒子シミュレーションを行うことができれば嬉しいのですが、 
まず最初に、現在のスーパーコンピュータではどのくらいの計算ができるかを確認しておきまし

ょう。粒子シミュレーションの制約条件としては、 

De

pe

x

t

λ

ω

≤∆

≤∆ 1
 

があります。また、特に電子の数値加熱の観点から、必要な計算タイムステップ数以内に数値加熱

が十分抑えられるように粒子数を設定する必要があります。これは非常に大雑把にいえば 

( )23 /10~ xnt Deptclheatingpe ∆λω  

です。その他、シミュレーションの初期条件を特定するためには cvmmM eepeei /,/,/ Ω== ωσ  

が必要です。できるだけ大きなグリッド数が取れるように xDe ∆~λ と考え、 1=c と規格化すると、

1/)//(~ <=∆ cvct epeDepe ωλω となるので、条件は自動的に満たされます。 

また、粒子の運動にとっては ctx >∆∆ / が必要であるが、 1=∆ x と規格化すれば、 1<∆ t  
ととれば、条件を満たすことができます。 
ここでは、イオンスケールの現象を粒子法で計算することが目標ですから、システムの空間サイ

ズを 10倍のイオン慣性長としましょう。つまり、 Deepi vcMc λω )/(/ 2/1= から、 



( )32/13 )/(10~ egrid vcMLN = 。 

また、時間スケールも 10倍のイオンジャイロ周期程度は必要なので、 )/( σω Mpei =Ω より、 

11 )(1010 −− =Ω= pei MT ωσ 。 

したがって、必要（グリッドあたりの）粒子数は 

)(10~10/~ 23 σω Mtn Heatingpeptcl
−  

と見積もることができます。 1)/(~ −∆ pee cvt ω なので、総計算量は 

422/72 )/(10~/ eptclgrid vcMtTnN σ∆∝  

となります。質量比が大きいほど、電子温度が冷たい程、計算量が膨大に膨れ上がることに注意し

てください。例えば、現状で名古屋大学計算センターの VPP5000システムで実行可能な典型的な
3次元粒子シミュレーションのパラメータは、 3.0/,1,100 === cvM eσ 程度です。即ち、 

10,10/,10~ 47 ==∆ ptclgrid ntTN  

程度の計算規模となります。VPP5000の 16PEの並列計算を行うとおよそ 50時間程度の計算にな
りますから、十分、実行可能な計算といえるでしょう。それでは、磁気圏プラズマシートの実際の

パラメータを代入するとどうなるかを見ると、 1.0/,10,1840~ == cvM eσ 程度になりますから、

先程の計算量に対して、 810~ もの大きな計算が必要となってしまうことが予想されます。これで
はいくら並列計算技術が進んだとしても現状の計算機システムでは到底実現できるような値では

ありません。これはほんの 10 倍のイオン慣性長程度のサイズについての値にすぎませんから、磁
気圏全体を実パラメータで粒子法のシミュレーションすることはとても考えることができません。 
 以上に見てきたように、私たちは限られた人工的に設定したパラメータによってのみでしか、無

衝突プラズマの世界を粒子シミュレーションすることができません。それでも、質量比が 100のオ
ーダーまで取れるようになってきたことで、新しい視点が見えるようになってきています。一番大

きな理由は、電子スケールとイオンスケールがはっきりと分離できることになったので、それぞれ

のスケール間の結合過程がはっきりと見えるようになったことです。実パラメータの世界を計算で

再現することが絶望的に困難な現状では、シミュレーションによって質量比などに対するスケーリ

ング則を見出すことによって、現実世界を垣間見る努力をすることがとても大事な視点です。 
 
2. 大規模計算の目指すもの 
一口に大規模計算といっても計算の目的は以下の 2つを分けて考える必要があります。 

 
(1) 現実世界のシミュレートを目指す計算－地学的により現実に近い状況設定を計算機上に構築し
て宇宙空間に発生する現象を理解する。例えば、宇宙天気予報への応用を目指した地球磁気圏

のグローバルMHDシミュレーション等、現実世界の予測を目指した計算。 



 

図 1 ジェット先端部で発生するリヒトマイアー・メシュコフ不安定。
色は密度を表す。 

(2) 計算機上の物理実験－物理的により理想化されたプラズマ環境を計算機上に構築して宇宙プラ
ズマの基礎物理を理解する。新しい物理過程の発見やより精密な理論体系構築を目指した計算。

(1)とは異なった意味で、正しくプラズマ環境を計算機上に実現するために大きな計算機リソー
スを必要とする。 

 
理想的な計算環境が整えば 2者は同じ計算の中に共存できるかもしれませんが、計算機リソースは
有限なので、(1)の意味で複雑な現実世界をシミュレートするためには何らかの近似が不可避です。 
それゆえ、(2)の基礎物理的な理解の進展なしには(1)のシミュレーションの精密化はあり得ません。
例えば、境界面を通したプラズマの輸送過程はMHD近似で取り扱うことができず、輸送係数（粘
性、抵抗、熱伝導）としてモデル化して MHD 方程式に組み込む手法が広く用いられていますが、
輸送の物理過程の詳細が理解出来ていないためにモデルの妥当性を評価できません。両側面のシミ

ュレーション研究を相補的に進めることが大切ですが、ここでは特に(2)の基礎物理的な理解の重要
性を強調したいと思います。 
 
3. 現在でもここまでできる！ ～ 新しい物理の発見 
宇宙プラズマ中には様々な時空間スケールの複雑な現象が現れますが、そのスケールのダイナミ

ックレンジは非常に広いため、全てのスケールを同時に取り扱うことは困難です。これまでプラズ

マ物理学では、適当な近似によって各スケール階層に適当な数値計算コードを開発・利用すること

によって、シミュレーション研究を進めてきました。このようなコードには、計算が軽い順に、①

MHD（磁気流体近似）、②Hall-MHD（磁気流体近似に Hall 効果を組み込む）、③hybrid(me=0)
（イオンは粒子、電子は質量 0の流体として扱う）、④two-fluid (me!=0)（2流体近似で電子の慣性
効果も取り入れる）、⑤hybrid(me!=0)（イオンは粒子、電子は流体、かつ、電子慣性効果も取り入
れる）、⑥particle（イオン、電子共に粒子として取り扱う）、の 6種類があります。 
①～③のコードは最小空間スケールがイオンスケールなので、比較的大きな空間領域を取り扱う

ことができます。①のコードでは、既に、地球磁気圏全体を十分取り扱えるようになっており、目

的(1)の用途の研究に盛んに用いられ始めました。最近では Hall効果の重要性が認識されているの
で、②を使った研究も

始まりつつあります。

①、②の計算は目的(1)
的な側面が強調され

がちですが、目的(2)
の研究にもまだまだ

面白いテーマが潜ん

でいます。例えば、リ

コネクション・ジェッ

トの先端部がリヒト

マイアー・メシュコフ

不安定によって複雑

な構造を示すことが、



 
図 2 磁気圏尾部配位を初期条件とする磁気リコネクション。色は速度
の X成分を表す。 

 
図 3  3次元粒子シミュレーションによる磁気リコネクション。磁力線
が示されており、磁力線上の色はイオン速度を表す。 

中村や丹所らの計算

によって発見されま

した（図 1）。ジェット
先端部はこの不安定

の非線形段階に分裂

を起こすのですが、分

裂したジェットは磁

気圏で観測されるバ

ースティ・バルク・フ

ローに対応するので

はないかと考えられ

ています。一方、

GEOTAIL衛星の観測
結果等からイオンの

運動論的効果の重要性が示唆されて、 (1)の意味でも③を使った磁気圏スケールの計算が注目を浴
びつつあります。宮城らは磁気圏尾部形状の初期条件からリコネクションを発生させる 3次元の③
のシミュレーションを行い、リコネクションに伴って発生するイオンビームと沿磁力線電流系の発

達の関係について調べました。その結果、地球側境界に沿磁力線電流系の先端が到達するよりもイ

オンビームの方が早

く到達することが明

らかになったのです

（図 2）。これまで、リ
コネクションによっ

て発生する沿磁力線

電流系が電離層に到

達してオーロラが発

光すると考えられて

いましたが、シミュレ

ーション結果はイオ

ンビームが最初にオ

ーロラを光らせる可

能性を示しており、サ

ブストームの発生機

構を考える上で興味

深い結果として注目

されています。 
④～⑥のコードで

は電子慣性効果を取

り扱う為に、時空間ス



 
図 4 ケルビン・ヘルムホルツ不安定の 2流体シミュレーション（電子
慣性効果を含む）。色は密度を表し、矢印はイオンの流速ベクトル。 

ケールは電子を基準

に考える必要があり

ます。これまでは大き

な領域・時間を計算す

る際は小さなイオン

－電子質量比（mi/me）

しか取れなかったの

で、折角、電子慣性効

果を取り入れてもイ

オンと電子の間のス

ケール分離を十分に

行うことができませ

んでした。しかし、最

初に考察したように

現在では、イオン－電

子のスケール分離を

十分に行った上で、イ

オンスケールの現象を扱うことができるようになりました。最近、私たちはこの最大規模の計算結

果から新しい重要な物理過程を発見しました。従来のプラズマ物理学は、空間スケールの分離を基

本とした階層構造（デバイ長、電子慣性長、イオン慣性長、MHDスケール）に依拠して構築され
ていますが、イオンと電子のスケールが十分分離できているように思える場合においてさえ、電子

スケールとイオンスケールの現象はスケールの違いを乗り越えて動的に結合し得ることが明らか

になったのです。例えば篠原らは、従来の理論ではサブストームを説明できるような速い磁気リコ

ネクションを引き起こす為には電子スケールの厚さの電流層が必要と考えられていたものを、スケ

ールの異なる不安定の結合によってイオンスケールの厚さの電流層でも非常に速いリコネクショ

ンの成長が起こり得ることを⑥コードのシミュレーションによって示しました（図 3）。また、ケル
ビン・ヘルムホルツ不安定によるプラズマ混合の問題についても、林や中村らの④コードによる計

算によって、電子慣性効果に起因する不安定との結合によって渦構造が崩壊する過程が発見されて

います（図 4）。これらの結果は、従来の考え方のように単純な輸送係数という形で静的にモデル化
するのでは不十分で、動的な結合過程をモデル化する必要があることを示しており、今後の研究の

発展が強く望まれています。 
 
4. まとめ 
以上に紹介したように、現在の計算機資源を最大限に活用して、私たちは計算機シミュレーショ

ンから従来の理論や観測に無い新しい物理現象を発見できるようになりました。今後、登場する次

世代・次々世代スーパーコンピュータの能力は、こうした新しい物理過程の発見や予測の道具とし

て益々利用価値が高まるでしょう。また、精度の高い計算結果からは観測や実験に対して“何を観
測すべきか？”という要請を出すことができるようになるはずで、これまで以上に計算機シミュレ
ーションと観測データ解析の連携が重要になるでしょう。太陽地球系分野はこれまで「その場観測」



ができるという特色を最大限に活かして宇宙プラズマ物理の理解をリードしてきました。私たちは

今後もこの優れた利点を継承し、観測的実証と理論・数値計算を車の両輪として、宇宙プラズマの

精密な記述体系の構築を目指すことが私たちの１つの大きな使命だと思います。 



非一様空間格子幅・時間ステップ幅および衝突効果

寺田 直樹（名大 ���研）

� �������	�
��

流れのシミュレーションを行う場合、流れ場の形が単純であれば直交格子を用
いて計算ができる。しかし、実際に解きたい流れ場の多くは大変複雑である。例
えば、飛翔体周りの流れ場を解くためには、計算格子を複雑な物体形状に沿って
分布させることが要求される。また、物体形状が単純な場合においても、物体近
傍などに発達する境界層を解像するためには計算格子を境界層周辺に局所的に集
中させることが必要となる。
非一様な格子分布の利用は、数値流体力学の分野では ��年以上にわたり盛んに

研究が行われてきた。しかし、粒子・ハイブリッドモデルにおいては現在でも等
間隔直交格子を用いることが一般的であり、今後非一様な計算格子を用いた研究
が急速に発展していくことが予想される。
本稿では、非一様な空間格子幅 ���� 分布を粒子・ハイブリッドモデルで利用す

るための手法を紹介する。また、非一様格子上での計算を効率良く行うために必
要となる、非一様時間ステップ幅 ����の利用や粒子数の動的変更を行う手法も併
せて紹介する。

� 非一様空間格子幅

��� 格子の種類

	
 非構造格子 ���

・格子点の並びに規則性をもたない

・格子の自由度が高い

・有限要素法や有限体積法で使用される

・三角形（三次元では四面体）が最も多く用いられるが、四角形（三次元で
は六面体）やその他のセル形状やその混在もしばしば用いられる

(a1) 非構造格子(三角) (b1) 直交格子 (b2) 境界適合格子(a2) 非構造格子(四角)

図 	 格子の種類

	



�
 構造格子 ���

・格子点の並びに規則性をもつ

・差分法や有限体積法で使用される

� 境界適合格子

図 � 境界適合格子

格子に柔軟性はあるが、特定の領域に格子点を極端に集中させるのは困
難な場合が多い。格子歪みは ��度以下が望ましい。

� マルチブロック

� 重なり格子



 非構造格子と構造格子の組み合わせ

・三角形（三次元では四面体）セルを用いると流束計算が多くなる。
�� 高い空間分解能が必要となる物体近傍にのみ構造格子（またはプリズ

ム形状の非構造格子）を用いる

�
 解適合格子

・流れの計算結果をもとに格子点を移動、または格子点を追加・削除

�



��� 粒子コードへの適用

� 非構造格子

� 格子形状が三角形（四面体）�� �
�
� ������������ �� ��
 �	����

プログラミングがやや複雑
物体形状が複雑な場合に使用（飛翔体環境など）

� 格子形状が四角形（六面体）�� �
�
� ������ ��� ���� ��� ����	�

三次元で六面体を用いた場合は、!�レベルの格子では格子体積が
	�"�に。

�� 隣接するグリッド間内の粒子数の変化が激しい。
粒子分割・合体 ����	
�� 
�が必要となる場合が多い。

� 境界適合格子

プログラミングが比較的容易で汎用性に富む
物体形状が相当複雑でない限り十分

� 解適合格子 �� �
�
� #�$���% ������

��� 境界適合格子 ＋ 粒子コード

� 境界適合格子における変換式 �&$$����' 	�

� 粒子コードに境界適合格子を適用するためには、多数個の粒子量（ラグラン
ジュ量）と非一様な格子点上の場の量（オイラー量）を効率的に結びつける
方法が必要である（図 
）。

例えば、粒子量 ���� ���からソース項 �����を格子点上でいったん求めれば、
場の量に関する方程式については &$$����' 	 の変換式がそのまま使用で
きる。

P

E, B
ρ, J

Fp

図 
 粒子量と場の量のやりとり






� 境界適合格子 ＋ 粒子コード の計算手順を具体的に書くと、

	
 粒子量 ���� ���を格子点上に集めてソース項 �����を計算する

�
 格子点上で場の量 �����を進める（計算空間� &$$����' 	）



 格子点上の場の量 �����から、粒子に働く力� �を計算する

�
 粒子量 ���� ���を進める（物理空間）

である。下線部分の粒子量と格子点上の場の量とのやりとりを行う方法は幾つ
かあるが、&$$����' �に(�)��*���� �	����による+,-法の �*��./��������

������ を応用した「補間法」「粒子局在化法」を記した。この手法を用いる
ことにより、境界適合格子の粒子コードへの適用が容易に行える。

適用例

-3 -2 -1 0 1 2 3
X

-3

-2

-1

0

1

2

3

Y

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6

[cm-3]

SW

N (total) &  Flow vector: 150 km/s

図 � 適用例 	 図 � 適用例 �

例 	
 デバイス内での電子軌道計算 �(�)��*����� 	����

例 �
 金星電磁圏のハイブリッドシミュレーション ���*��� �� ��
� �����

・イオン慣性長の分布をもとに格子分布を決定
・球面上への準一様な格子分布

�



� 粒子分割・合体法
非一様格子を用いる際には、粒子数の動的変更が必要となる場合がある

図 0 粒子分割

方法 ��
�
� #�$���� ��� 1*�234��� �	�����

� 粒子分割

同一速度の２粒子に分割。

ソース項が変化しないように粒子を分割する。（例えば図 5の��から等距離
の ��� ��に、電荷と質量を二等分した粒子を置く）

� 粒子合体

運動量保存とエネルギー保存を共に満たしたまま合体することはほぼ不可能。

Æ 6
��� � ���

����! ����
� 	のものを合体。

（他にも３粒子を合体させて２粒子を生成する方法 ������� ��� ���� ����

���	� などもある）

図 5 分割粒子の配置 表 	 合体により粒子数を 	7�に
した分布のテスト

問題点
・合体は近似でしかない �表 	�

・分割において、細かいグリッドでの速度分布に偏りが出ないようにする為
には、上流の粗いグリッド内にも十分な数の粒子が必要

・分割・合体によって系の発展が変わる

�




 非一様時間ステップ幅
時間ステップ幅��は、対象とするプラズマ現象を解くのに十分小さくなければ

ならない。例えば一般的な陽解法ハイブリッドコードにおいては、

�� � ��� 8��� 6 ���	��
��

�� � ����� （クーラン条件）

を共に満たす必要がある。このことから、

	
 背景場 ���� ��など�が空間的に大きく変化する

�
 グリッド幅��が空間的に大きく変化する

などの場合は、小さな��が必要な領域でのみ小さな��を用いることによって、
計算効率を大幅に改善することが期待できる。

�� 背景場が空間変化する場合

例
 ( �	�"��

・地球磁気圏グローバルシミュレーションでは内部磁気圏領域で��を小さくし
なければならない �強い固有磁場のために8��� � 	���が小さくなる�

・地球中心から 	
�地点でのアルベン速度は �� � 5�����
�
�����

図 " 二領域で異なる��を用いたスキーム

問題点
小さな時間ステップ（��� 6 ����が �ステップ）の間に速いグリッド側から遅
いグリッド側に伝搬していく短周期擾乱
�� 有限の伝搬速度の双曲型システムの場合、緩衝層（通常２～３グリッド）

で対処

0



slow fast

∆t’= ∆t/n

buffer zone

∆t

Buffer zone 内の場・粒子の量を小さ
な時間ステップ幅で進め、境界から
流入してきたフラックス量をもとに、
遅いグリッド側の場を補正する

perturbation

∆t’

∆t

図 � 緩衝層を用いた遅い格子上の場の補正

�� グリッド幅が空間変化する場合

例
 #�$���% ������

図 	� 非一様格子幅と非一様時間ステップ幅の併用

格子幅は��� 6 �����
���（�は格子分割のレベル）で与えられる。格子幅が小

さなところでは時間ステップ幅も小さくする（��� 6 �����
���）。緩衝層では格

子幅・時間ステップ幅ともに元より小さいものを用いるので、一時的に粒子分割
を行った上で小さな時間ステップ幅で進め、遅いグリッド側の場の量を補正する。

5



� 衝突効果
惑星電離圏領域での現象やデバイス内でのプラズマ現象などの様々な現象にお

いて、プラズマ粒子が中性気体等と衝突する効果が重要な役割を果たすことがあ
る（�
�
� 図 �）。従来、数値シミュレーションにおいて衝突の効果は流体モデルを
用いて調べられてきた。しかし、複雑な物理過程や反応過程の結果、プラズマ粒
子の速度分布は非マクスウェル分布となり得るので、そのような場合は自己矛盾
のない粒子モデルを用いて調べる必要がある。この章では粒子モデルに衝突効果
を組み込む手法について紹介する。

��� ��� ＋ モンテカルロ衝突

ここでは 9����� ��� � *���*� �	���� に基づいて粒子コードに衝突効果を組み
込む手法の一例（+,- ＋ モンテカルロ衝突）をみていく。図 		のフローチャート
にあるように、衝突効果はモンテカルロ法を用いることによって+,-コードに容
易に組み込むことができる。ここでは 	タイムステップ ����ごとに衝突粒子を決
定する方式を採用している。

Integration of equations
of motion, moving particles

Fi            vi’            xi

     Particle loss/gain
     at the boundaries
(emission, absorption, etc.)

Integration of field
equations on grid

(ρ, J)j       (E, B)j

      Weighting

(x, v)i        (ρ, J)j

     Weighting

(E, B)j         Fi

Monte-Carlo Collisions

    vi’             vi
∆t

図 		 +,- ＋ モンテカルロ衝突のフローチャート

�番目の粒子の衝突周波数は、

�� 6 ���	�� �	�

で与えられる。ここに

�	 ���� 6 ������ ! � � �! �
 ���� ���

で、 �� は �型の衝突の衝突断面積 �	 � � � ��、�� 6
�

�
	��� は粒子 �の運動エネ

ルギー、��は衝突対象の数密度である。この衝突周波数を用いて、タイムステッ
プ��間の粒子 �の衝突確率は、

�� 6 	� �'$������� �
�

"



で与えられる。
モンテカルロ衝突のアルゴリズムは、基本的には以下の手順で成り立っている

（計算効率を考慮したアルゴリズムは ����� 参照）。

	
 全ての粒子に対して式 �	�より衝突周波数 ��を求める（個々の粒子の速度、
エネルギーの値が必要）

�
 全ての粒子に対して式 �
�より��間の衝突確率 ��を計算する



 全ての粒子に対して ��� 	�の一様乱数を発生させ、その乱数の値が��以下で
あるならば、その粒子を衝突粒子とする

�
 

で衝突が決定した粒子に対して一様乱数を発生させ、衝突の型 ��:$� 	� �:$�

�� 


� �* �:$� ��を決定する（図 	
参照）

�
 �
で衝突の型が決定した粒子に対して散乱角や衝突後のエネルギーの計算な
どを行う

	
の衝突周波数の計算や �
の衝突の処理などは、衝突粒子と衝突対象（電子、イ
オン、中性）との個々の衝突過程の特性に応じて計算方法を決定しなければなら
ない。そこで以下で一例としてアルゴンイオンとアルゴン原子の衝突をみる。

例（���と��の衝突）

�� 衝突周波数の計算の例

アルゴン原子の熱速度がイオンのものに比べて無視できるほど小さい場合は、衝
突周波数は個々のイオンの速度 ��とエネルギー�� 6

�

�
	��� を用いて図 	�と式 �	�

から求めることができる。
しかし、アルゴン原子の熱速度とアルゴンイオンの速度が同程度の場合は、ア

ルゴン原子の速度分布の情報（例えばマクスウェル速度分布など）が必要となる。
まず、アルゴン原子の速度分布から無作為に衝突対象となるアルゴン原子を一つ
選ぶ。そしてその衝突対象原子の系でみた �番目のイオンの速度から、衝突断面積
を図 	�により求め、衝突周波数を式 �	�により求める。この手順を全てのイオン
について繰り返す。

�� 衝突の処理の例

衝突の型が図 	�の散乱 �)2����*����の場合は、剛体球衝突であると仮定し衝突
時のエネルギー損失率を

���� 6
�	�	�

�	� !	���
�	� 2�);� ���

で計算する。ここに;は質量中心系での散乱角であり、散乱は等方一様であると
仮定する。もし、	
で衝突対象原子の系に移していたならば、衝突処理後に元の
系に戻す。

�



図 	� &*�.&*衝突断面積

衝突の型が電荷交換 �2��*�� �'2������の場合は、アルゴン原子からアルゴンイ
オンに電子が移動するとする。生成されたアルゴンイオンの速度は、衝突対象原
子の系で �、すなわち衝突対象原子の入射速度とする。

��� テクニカルな話

����� 空衝突

モンテカルロ衝突法は、直観的で、+,-コードに組み込むことは容易であるが、
そのままでは計算量が膨大になってしまう（���の手順において、全ての粒子につ
いて 	
� �
� 

を計算しなければならない）。そこで、空衝突 �� �� 2����)����を導入
することにより計算の効率化を行う。

図 	
 空衝突の導入

	�



	
 図 	
にあるように、エネルギーに関して一定の値をとる仮の衝突周波数 � � 6

��'����	 ��を求める（空衝突周波数 ���

 6 � �� ���!��! � � �!�
�を導入）

�
 ���

 6 	� �'$��� ���� を計算する



 全ての粒子に対して ��� 	�の一様乱数を発生させ、その乱数の値が ���

以下
であるならば、その粒子を仮の衝突粒子とする

�
 

で仮に衝突が決定した粒子に対して一様乱数を発生させ、図 	
を用いて
衝突の型 ��:$� 	� �:$� �� 


� �:$� � � �* � ���を決定する

�
 �
で衝突の型が決定した粒子に対して散乱角や衝突後のエネルギーの計算な
どを行う

このように空衝突を導入することによって、全ての粒子に対する計算は 

のみと
なり、�
� �
の計算は� 	 ���

個の粒子について計算するだけでよくなる。通常
���

は 	���のオーダーであるので ������参照� 計算量の大幅な節約ができる。

����� ��の制約

モンテカルロ衝突法では、タイムステップ��の間にそれぞれの粒子についての
衝突を 	回づつしか処理できない。しかし、有限の��を用いる限りは、	タイム
ステップの間に複数回の衝突が含まれうる。複数回衝突による衝突のミスを減ら
すためには��を十分小さくしなければならない。
ある粒子の��当りの衝突ミス回数は、

� �
��
���

� �
� 6

� �
�

	� ��
���

であるので、衝突ミスの回数を 	<以下にするには�� � ��	とする必要がある。空
衝突を用いる場合は、���

 � ��	 すなわち�� � ��	�� � とすればよい。

		



������
� �

境界適合格子での座標変換における基本式

簡単の為に二次元場で、�� �は時間変化しない場合を考える。��� �� �� で定義さ
れる物理空間から計算空間 ��� �� �� への写像関係式は、���

��
� 6 �

� 6 ���� ��

� 6 ���� ��

�0�

と書ける。この変換は図 �にあるように、計算空間では�� 6 �� 6 	 となる直交
格子になるように選ぶ。

この変換はチェーン則より、�
�	

�
��
�
��
�
��



�� 6

�
�	

	 � �

� �� ��
� �� ��



��
�
�	

�
��
�
��
�
��



�� �5�

また、式 �5�の ��� �� ��を ��� �� ��と入れ替えて逆変換を求めると、
�
�	

�
��
�
��
�
��



�� 6

�
�	

	 � �

� ��� ����
� ���� ���



��
�
�	

�
��
�
��
�
��



�� �"�

ここで、

��� 6 ����� � ����� ���

は変換のヤコビ行列式である。式 �5�� �"�を比較することにより、

�� 6 ���� �� 6 ����

�� 6 ����� �� 6 ��� �	��

というメトリック関係式が得られる。

つぎに、次の形の方程式を考える。

��

��
!

��

��
!

��

��
6 � �		�

この方程式は、式 �5�のチェーン則より、

��

��
! ��

��

��
! ��

��

��
! ��

��

��
! ��

��

��
6 � �	��

	�



と変換される。
ここで、式 �	��のメトリックを用いると、式 �	��は、

��

��
! ���

��

��
� ���

��

��
� ���

��

��
! ���

��

��
6 � �	
�

となる。
例えば点 ��� ��での ��の差分式は

������� 6



������ � ������

���

�
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������ � ������

�

�
�	��

などで与えられるので、このように物理空間上の格子点の座標 ��� ��からメトリッ
クを数値的に評価してやると、座標変換後の方程式 �	��を ��� ��の直交格子上で容
易に解くことができる（実際にメトリックを評価する際には、有限体積法で行う
ようにコントロールボリュームの幾何学的関係から評価すべきであり注意が必要
である）。変換式の詳細および格子生成の方法については ����$)�� �� ��
 �	�"��

や藤井 �	����を参照されたい。

������
� �

境界適合格子を���コードに適用するための手法

�� 「補間法」（補間係数の求め方）

通常の等間隔直交格子での �*��./�������� ������では、粒子に働く場は格子点
上の場����� ������� ������� ��������より、

�� 6 �	� ����	� ������� ! ���	� ���������

! �	� ����������� ! ������������

で与えられる（図 	�）。
今、境界適合格子上の任意の四辺形�を単位区間 ,� 6 ��� 	�	 ��� 	�に変換する

際に、線形関数が保たれているとして �*��./�������� ������を適用すると、補間
係数 ��� ��は、

�� 6
�� ! ��� ! 
����

��������� � 	
�（��������� 
6 	 のとき）

6
��

	 ! ������������ � 	�
� （��������� 6 	 のとき）

�� 6
��

	 ! ������������ � 	�

	




と求められる。ここで、

�� 6
��� ������������ � ������ �� � ������������ � �����

������� � ������������ � ������ ������� � ������������ � �����

�� 6
������� � ������� � ������ ������� � �������� �����

������� � ������������ � ������ ������� � ������������ � �����

� 6 �	 ! ������������ � 	�� ������������ � 	����� 
 6 ������������ � 	�

である。
実際の計算では、��������� � 	を避けるためにニュートン法を用いて、

��� 6
��

	 ! ��������������
�
������� � 	�

�	��

��
� 6

���	 ! ����
� ���������� � 	��

	 ! ����
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という繰り返し演算を行う。
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i, j+1 i, j+1 )(x , y    Pi, j+1
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図 	� 四辺形�の単位区間 ,� 6 ��� 	�	 ��� 	�への変換
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�� 「粒子局在化法」（粒子が所属するセルを同定する手法）

非一様格子上では、粒子の位置情報 � ��� ��のみから、その粒子が所属するセル
を割り出すのは困難である。そこで、以下の )��$ 	 � 0から成る粒子追跡アルゴ
リズムを用いて、粒子が所属するセルの同定を行う。この粒子追跡アルゴリズム
は、「補間法」の ��� ��を用い、粒子が所属するセル番号 ��� ��を効率的に求める
アルゴリズムである。

注） ここでは、セル ��� ��は格子点 ����� ������� ������� �������� に囲まれた領域と
している。

)��$ 	= 仮のセル番号 ��� ��に粒子が 	ステップ前にいたセルのも
の ���� ���を代入する

)��$ �= セル ��� ��で式 �	��を実行し、補間係数 ���� �
�
�を計算す

る

)��$ 
= セル番号 ��� ��に補間係数を加える（� ! ���� � ! ���）

)��$ �= ��� �� 6 �,>���! ����� ,>��� ! �����とする

)��$ �= セル ��� ��で式 �	��� �	0�を用いて、��� ��を求める

)��$ 0= ���� ��� 
 ,� なら ?
�
。違うなら )��$ 
に戻り、)��$


 � 0を繰り返す。

)��$ 0 の条件判断を行わず、)��$ 
 � �を � � �回繰り返す場合もある（通常 
回
の繰り返しで充分である）。
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プラズマ粒子シミュレーションで使用する境界条件 

 
国立極地研究所 岡田雅樹 

 
プラズマのシミュレーションは一般に、偏微分方程式の初期値境界値問題を数値的に解く

ことに相当する。物理的に正しいシミュレーションを行うことができるどうかは、これら

の初期値と境界条件によって決まるといっても過言ではない。本章では、プラズマ粒子シ

ミュレーションにおいて使用される境界条件とその物理的意味について述べる。 
 
１．概要 
シミュレーションでは、無限の物理領域の一部を計算機上に再現するためになんらかの仮

定を必要とする。例えば、一様無限の空間内に周期性のみを持つ物理現象を再現する場合

には、周期境界条件を使用することができる。あるいは、空間内に局所的に擾乱の発生領

域が存在し、その影響が空間的に拡散または放射されるような現象をシミュレートする場

合には、擾乱の発生領域を取り囲むように擾乱の吸収領域を設ける方法が有効である。ま

た、宇宙飛翔体等をシミュレーション空間内にモデル化するためには、導体または誘電体

をシステムないに置く必要がある。本節では、これらの境界条件を与える手法について詳

述する。 
 
２．周期境界条件 
一様無限の空間を再現する手法として最も一般的な手法が、周期境界条件である。システ

ム長 Lの１次元電磁粒子コードの場合、全ての物理量 F(x)に対して、F(x=L)=F(0)が成り立
つことを意味する。これは、左右のシステム境界を越えて伝播する波動は、反対側のシス

テム境界からシステム内に伝播することを意味している。このことを電位Φにあてはめる

と、システムの両端における電位Φは同じでなければならず、ガウスの発散定理からシス

テム内の全電荷は零でなければならないことになる。さらにシミュレーションの全ての時

間ステップにおいてこの条件が満たされるために、ひとつの境界を越えたプラズマ粒子は、

そのまま速度を変えることなく反対側の境界から注入されなければならない。このような

周期境界条件を与えることによって、実空間においてシステム長 L を周期とする現象をシ
ミュレーション空間に再現することが可能になる。この周期性によってポアソン方程式の

解法として高速な FFT法が有効である。 
 
３．拘束プラズマ境界条件 
実験室プラズマ等の有限空間に閉じ込められたプラズマ環境を再現するためには、

F(x=L)≠ F(X=0)である拘束プラズマ境界条件を使用する必要がある。ここで紹介する拘束



プラズマ境界条件は、シミュレーション空間以外の領域はプラズマの存在しない自由空間

である状況に似ている。つまり、放射電磁波が境界に達するとシステムには戻らず、シミ

ュレーション空間から取り除かれ、外部からレーザー等の電磁波を入射することも可能と

なる。シミュレーション空間外(x<0, L<x)の領域では静電波は存在しないため、Ex(x)=0と
なる。このようなシステムでポアソン方程式を解くためには FFT法をそのまま使用するこ
とはできないが、少々工夫をすることで FFT法と同程度の計算量でポアソン方程式を解く
ことができる。非周期的なシステムに対して FFT 法を適用するためには、電荷密度ρが、

)0()( === xLx ρρ を仮定する必要がある。非周期的でかつ電荷中性なシステムは 
)0(0)( ==== xLx ρρ     （１） 

を仮定することによって実現できる。この仮定によって、ポアソン方程式 

)(2

2

x
x

ρφ
−=

∂
∂      （２） 

は周期的な特解 pφ を持つことができる。この特解 pφ に bxa +=φ なる解を加えることによ

って、非周期的な解をえることができる。ここで、ｂは境界条件から求められ 
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さらに中心差分の原理と周期性Φp(x+L)=Φp(x)を利用すると 
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)()()( φφ  for xLXx j ∆−≤≤∆   （６） 

このような条件 )0(0)( ==== xLx ρρ を実現するためには、システムの両端のグリッド

に荷電粒子が入らないようにする必要がある。システム両端における粒子の取り扱いとし

ては、 xx ∆= と xLx ∆−= において粒子を反射する壁があるように取り扱うことによって

実現できる。 

 



図１．拘束プラズマ境界条件を扱う場合の境界近傍での粒子の取り扱い 
４．完全導体境界条件 
完全導体表面では、電界ベクトルの接線成分がゼロになるため、 )0(0 == jx と

)( xx NjLx == における境界条件は次のように書くことができる。ここで、jおよび kは x,y
方向のグリッドの添え字である。 

0=yE  → 02/1,0, =+kyE     （７） 

0=zE  → 0
2

2/1,2/1,2/1,2/1,
=

+ ++− kzkz EE   （８） 

Ez成分の境界条件は（８）式のような平均操作を行うことにより２次の精度を持つことが
できる。境界面上において、Ey, Ez 成分が常にゼロであることをマックスウェル方程式の
磁界成分の時間変化の式に適用すると 

Ec
t
B

×∇−=
∂
∂      （９） 

Bx  → )(
2

0
,2/1,,2/1, yBBB

x
kxkx
=

+−   （１０） 

が得られる。この条件は方程式を閉じるためには必要ではないが、導体境界面上において

初期値として与えた磁場成分が後の時間ステップにおいて保存されるということを示して

いるという意味で重要である。 

 

図２．導体境界条件を使用する場合の境界(x=0)近傍のグリッド配置 
 



 
６．開放境界条件 
無限に広がる空間をシミュレーション空間に再現する方法として必要な境界条件が開放境

界条件である。この条件でもっとも重要なのは、実際にシミュレーション空間の外に格子

点が存在しないにもかかわらず、あたかも無限遠まで続いているかのように“みせかける”

必要があるという点にある。つまり、シミュレーション空間内で発生した静電的、電磁的

波動は外部に向かって伝播するが、これらの波動はシミュレーション空間外の無限遠に伝

播し、シミュレーション空間内にはもどってこないように見せかける必要がある。これを

実現するためには、大きくわけると二つの方法がある。ひとつは、外向きの波動を数値的

に設けた吸収領域において減衰させる方法である。この方法は、電波無響室の原理と同様

で、有効な方法であるが計算量が増加することが欠点である。二つ目の方法は、自由空間

と同じインピーダンスを持つ媒質を境界面上に置く方法である。この方法は、計算量の増

加はわずかですむ反面、プラズマ波のような自由空間と異なる屈折率を持った媒質中を伝

播する波動に対しては適用が困難である。この説では、幅広い適用が可能な吸収境界条件

について述べることにする。 
 
吸収境界条件の設定法はいくつかあるが、基本となる考え方は以下のファラデーの法則に

磁流項を加える方法である。 

mJ
t
BEc +
∂
∂

=×∇−     （１１） 

ここで、 BxJ mm )(σ= であり、仮想的に磁気単極子の流れを作ることに相当する。このよう

な操作と同様の手法としては、１以下の定数を磁場成分に毎ステップ乗じることによって

も可能である。 
 
マスキング法は、電界、磁界などの物理量を直接的に減衰させる方法である。使用する減

衰係数 )(xfM の空間分布は図５に示すように、xに関して２次関数で与えると比較的効率的
に減衰できることがわかっている。 

)()()( xExfxE M→     （１３） 
)()()( xExfxE M→     （１４） 

ここに、 )(xfM は 
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となる減衰関数である。この手法に改良を加えた方法なども開発されている。 
 



さらに純粋に横伝播の電磁波に対してのみ吸収効果を持つ方法として、電場の回転から電

流成分を求める方法が使用される。 
])([ ExMcJ ×∇×−∇=×∇= α     （１２） 

この方法は、静電波成分にまったく影響せずに、電磁波成分のみを減衰させることができ

る点において、興味深い方法であるといえる。 
 
いづれの方法においても、減衰させる波の波長と同程度の長さの減衰領域がシステムに必

要となる。十分な減衰を得るためには、シミュレーション空間の１方向のみを吸収境界と

する場合でも、システム全体の半分、2方向を吸収境界とした場合はシステム全体のおよそ
1/4を吸収領域に設定する必要があり、計算量が非常に大きくなるが、現実的なシミュレー
ションを行うためには、現段階ではもっとも実用的な方法といえる。 
 

 
図３．２次元のシミュレーション空間の x<0,x>Lxの領域に吸収境界を取り付け、y方向は
周期境界を設定した例。 



 
図４．吸収境界を物理領域の両側に設け、この領域では電界、磁界を減衰させることによ

って反射を抑える。 
 
６．非構造格子電磁粒子コード 
以上のような境界条件を組み合わせることによって、宇宙空間を飛翔する衛星などの飛翔

体環境を模擬することも可能となる。飛翔体などの複雑な形状をシミュレーションのモデ

ルとして取り入れるためには、直行格子によって空間を離散化するのみでは不十分で、構

造格子あるいは非構造格子を使った空間格子が必要となる。非構造格子電磁粒子コードで

は、空間を三角要素に分割して電磁界の離散化を行う。図５は、一つの三角要素上におい

て離散化された電界、磁界の配置を示したずである。電界、磁界の XY面内の成分は、三角
要素の辺上で定義され、Z成分は三角要素の重心で定義されている。これらの空間格子はシ
ミュレーションに適した Delauney-Voronoi Meshを形成する。 
 
この離散化により、 zE 成分の時間発展を計算するために必要な B×∇ は以下のようにして

計算できる。 

( )
e

xyxyxy
zxy

A
lBlBlBB 332211 ⋅+⋅+⋅

≅×∇    （１３） 

同様に、 xyB 成分の時間発展は隣り合う三角形要素で定義された zE 成分の差分をとること
によって計算することができる。 



 
図５．三角形要素上における電界、磁界の離散化。 
 
図６(a)は、非構造格子によってシャトル型飛翔体近傍の電磁環境をモデル化した例である。
(b)は電磁波の伝播の様子をシミュレートした例で、ほぼ任意の形状の飛翔体環境に適用す
ることが可能となる。図７は、３次元空間を４面体要素によって離散化した例である。飛

翔体の表面物性に合わせて、導体境界条件、誘電体境界条件、吸収境界条件を組み合わせ

ることにより、このような宇宙飛翔体環境のシミュレーションが実用になりつつある。 
(a)    (b) 

  
図６．２次元のシミュレーション空間に導体境界条件を内部境界として使用して飛翔体を

モデル化(a)を行い、電磁波の伝播実験を行った例(b) 



 
図７．３次元の飛翔体環境シミュレーションコードの例。４面体によってシミュレーショ

ン空間を離散化をおこなっている。 
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